This paper is published in Volume-3, Issue-3, 2017
Area
Bio Medical Signal Processing
Author
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima
Org/Univ
National Institute Of Technology, Calicut, India
Keywords
Electroencephalogram, Fractal dimensions, Lyapunov Exponent, Support Vector Machine, Neural Networks.
Citations
IEEE
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima. Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis, International Journal of Advance Research, Ideas and Innovations in Technology, www.IJARIIT.com.
APA
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima (2017). Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis. International Journal of Advance Research, Ideas and Innovations in Technology, 3(3) www.IJARIIT.com.
MLA
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima. "Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis." International Journal of Advance Research, Ideas and Innovations in Technology 3.3 (2017). www.IJARIIT.com.
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima. Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis, International Journal of Advance Research, Ideas and Innovations in Technology, www.IJARIIT.com.
APA
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima (2017). Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis. International Journal of Advance Research, Ideas and Innovations in Technology, 3(3) www.IJARIIT.com.
MLA
M. V Satya Sai Chandra, Dr. Paul K Joseph, Dr. Thasneem Fathima. "Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis." International Journal of Advance Research, Ideas and Innovations in Technology 3.3 (2017). www.IJARIIT.com.
Abstract
Epilepsy is a very common neurological disorder. Electroencephalogram (EEG) is the major diagnostic tool used for analyzing the human epileptic seizure activity and there is a strong need of an efficient automatic seizure detection using it to ease the diagnosis. This work aims at an automatic system for diagnosis of epilepsy. Here we extract some features like fractal dimensions, sample entropy, Lyapunov exponent, etc of both normal and epileptic EEG signals. These feature values are used as inputs to train classifiers like Artificial neural networks, support vector machines, probabilistic neural networks etc., After the training, we test the classifier with test EEG data.