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ABSTRACT 

Food poisoning is a problem affecting people on a global scale, killing 420,000 people a year as of 2022. This problem is exacerbated 

by the distribution of already-rotten food from farms to vendors and can be mitigated by preventing infected food from ever leaving 

farms in the first place, or by identifying rotten foods before vendors sell them. Thus, this study summarizes the building of a 

hyperparameter-optimized deep learning model that uses a Convolutional Neural Network (CNN) to identify the kind of fruit and its 

quality by looking at an image of a fruit, a simple process. This automation of food classification and safety allows lower-income 

farmers and vendors to escape the time and monetary cost of manually verifying whether or not each fruit they distribute/sell is safe 

to eat. 
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1. INTRODUCTION 
Food safety and nutrition are closely interconnected. Approximately, 600 million people globally fall ill from contaminated food, leading 

to 420,000 deaths. Unsafe food causes a loss of US$ 110 billion annually in low- and middle-income countries [1]. This 

disproportionately affects families with young children, senior citizens, and pregnant/chronically ill individuals, making it an essential 

and urgent issue to address [2]. However, most farmers and local vendors are unable to access adequate tools to perform the task in a 

timely, accurate, and affordable manner, leading to perpetuation of spoiled foods among consumers [3]. In some specific scenarios, 

particular chemical reagents with specific purposes-like fluorescent probes are also employed for fruit freshness testing [4]. While these 

technologies have proven to be efficient in detecting fruit freshness, they all have some disadvantages in common, such as high 

investment costs, limited capacity to process large-scale data, and reliance on human experience.  

With the evolution of artificial intelligence, traditional methods have been progressively replaced by machine learning approaches in 

detection of fruit freshness. These approaches have been garnered for their non-invasive nature, rapidity, precision, and low-cost benefits 

[5]. For instance, machine learning techniques like Support Vector Machines (SVM) and decision trees have been utilized in 

spectroscopic profile datasets of fruits to determine their freshness [6]. Classic deep learning models, such as GoogLeNet, have been 

integrated with dimensionality reduction techniques to assess the fruit image data for freshness detection [7]. In case of increasingly 

complicated applications, larger deep learning models, such as YOLO, have been used for freshness detection [8]. In a study, a 

Convolutional Neural Network (CNN) multi-task learning (MTL) model has been utilized for computer vision-based fruit freshness 

detection [9]. 

Computer vision has the potential to address these concerns and has already been explored in several research initiatives in the past. 

However, these academic attempts often face limitations such as insufficient data (only 5,658 images) [10], which leads to overfitting 

on a small dataset, or a limited variety of fruits (only three types of fruits) [11], restricting their applicability. Research on applying CNN 

to fruit freshness detection remains limited and needs further investigation. This study aims to explore the potential of using CNN, 

optimized using hyperparameter tuning approach, for this purpose. The CNN algorithm was chosen specifically because of its 

specialized nature and high accuracy when it comes to image classification with large datasets [3]. This model’s pipeline also 

conclusively tested how different combinations of hyperparameter-pairs work in tandem, ultimately culminating in the selection of 

features that function well not just in hyper-specific cases, but also when combined with other well-functioning features that impact a 

different part of the algorithm. 
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2. MATERIALS AND METHODS 
i. Dataset acquisition 

This research was conducted on a MacBook Pro using the Apple M3 Pro chip, an 11-core central processing unit and a 14-core graphics 

processing unit (GPU), using 18 gigabytes of random-access memory. The datasets were obtained from various sources including 

published articles [12], [13], Kaggle [14], [15], [16], [17], and open source libraries with computer vision datasets [18]. The details of 

the dataset are presented in Table-1. The dataset contained images of five fruits, distinguished into fresh and rotten fruits, accounting 

for a total of ten classes as shown in Table-1 and Chart-1. The following sections briefly outline how the datasets were segregated, 

converted, and inputted into the model for training and validation using the various libraries. The detailed process involved in this 

research is illustrated in Chart-2. 

Table-1: Summary of dataset. 

Class Number of Images 

Healthy Apple 2,782 

Rotten Apple 2,650 

Healthy Banana 2,927 

Rotten Banana 2,889 

Healthy Mango 2,794 

Rotten Mango 2,856 

Healthy Orange 2,952 

Rotten Orange 2,927 

Healthy Strawberry 2,865 

Rotten Strawberry 2,867 

Total Images 28,509 

  

 

 
Chart-1: Dataset sample 

ii. External libraries 

External libraries used in this model were NumPy 1.26.4, iPython 8.25.0 and SciKit Learn 1.4.2. NumPy was used to work with arrays, 

iPython was used in building the program, and SciKit Learn inclusive of several machine learning models was used for integrating with 

other modules to accomplish its task. Tensorflow 2.17.0 (with Keras 3.4.1) was used as an external library in the proposed model to 

help with pre-processing the data, building the proposed model, and for training the model to formulate predictions.  

 

iii. Data sorting 

Data retrieved was sorted into separate classes. Each class contained approximately equal number of images, with difference between 

the classes with most images and least images limited to only 300 images. In the case of healthy and rotten classes of each fruit, the 

difference between the healthy and rotten class was limited to a maximum of 130 images, aimed at preventing overfitting of data in any 

of the classes. Data consisted of images gathered from varying camera lens angles and qualities. This was done to ensure applicability; 

by taking into consideration the challenges individuals may face with accessing good quality camera.  
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iv. Data conversion to arrays 

Before splitting the data, the list of images and their classes were converted into NumPy arrays using the numpy.array() function. This 

converted the list to an n-dimensional array that served the function of a list while being up to 50 times faster to process than a traditional 

Python list [19].  

Each variable was iterated through using a “for” loop which, for each image in the subdirectory, appends the image itself (resized to a 

size of 32x32 and converted to a NumPy array) to an empty list using tensorflow.keras.utils.load_img function, which loaded the image 

into a Python Imaging Library (PIL) or a PIL format for Python to read.  

Then, this appended the image’s class to another empty list [20]. However, to make the data possible for the model to fit to, the images’ 

classes names were replaced by numbers from 0-9, in order of their position as presented in Table-1, from first to last. 

 

v. Data segmentation 

Data were split-up into images and respective labels using Python glob module (short for “global”). The Python glob module found all 

the pathnames that matched with a specified pattern. In the proposed model, this assigned the data in each class’s subdirectory to a 

variable through glob.glob() function, which returned all the matched pathnames [21]. NumPy used a novel way to manipulate data 

through sklearn.model_selection.train_test_split to split each image in the dataset and its respective class for data training and validation 

using the parameters of the image data and the classes. Additionally, two parameters including test_size and random_state were used. 

The test_size provided a ratio for the distribution of fruit images for “training” and “validation” purposes (3:1 ratio). While the 

random_state of the data provided a fixed degree of shuffling, ensuring that the data was randomized to prevent the model from 

overfitting and training on only limited classes (e.g., only training on groups of rotten apples and oranges before meeting a healthy 

banana during the validation process), while also ensuring standardization of the shuffling across repeated running of the model over 

several days [22]. 

 

vi. Data transformation 

One-hot encoding method was followed to transform the categorical data into numerical format (0 and 1). The y-values for both training 

and validation were one-hot encoded using keras.utils.to_categorical() function, which transformed the y-data from being a single 

column with 10 possible values per row, to having 10 different values with two possibles values per cell (0 and 1), corresponding to 

whether that column was “yes” or “no”. Thus, instead of healthy_bananas being represented by a single “2” in the y-data column, they 

were represented by a “1” on the healthy_bananas column (i.e., instead of “2” in the column), and a “0” in other places [23].  

 

Chart-2: Schematic representation of the process involved in this research 
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vii. Proposed CNN Model 

The actual model was developed once the data was one-hot encoded. In this model, all the hyperparameters were altered during the 

course of this study. We employed a CNN model, with basic structure comprising a Sequential() model, an input Conv2D layer, two 

MaxPooling2D layers, a Flatten layer, and two Dense Layers inclusive of a softmax activation function. We used the “he_uniform” 

kernel initializer through all layers. The metrics (i.e., accuracy and area under the curve [AUC]) remained as constant variables. In this 

model, the activation functions applied a mathematical function to the output of each neuron, which made the model nonlinear. The 

activation function computed the weighted sum and added bias, to determine if the neuron should be activated or not.  

The weights were fundamentally the strengths of the connections between individual neurons, and biases were constants that were 

appended to each neuron’s output [24]. 

 

viii. CNN Architecture 

CNN consists of multiple layers, and the architectural design and its parameters are shown in Chart-3 and Chart-4. These include: 

a. Conv2D layer (2D Convolutional layer): This basically “slides” across the input data of a given image, from left to right, and 

from top to bottom, capturing all squares of the equivalent size specified within the image. Then, multiplying and condensing them 

into a single square on the output image [25]. 

b. Normalization: The normalization functions each possess a distinctive way to transform data to be on a similar and fixed scale, 

with identical range to enhance the model’s performance and training strength. This has been used mainly when the X-data gathered 

was largely variable, as in the case of images [26]. 

c. MaxPooling2D: This is a down sampling technique used in reducing the dimensions of the input it gets in a CNN, driven towards 

elimination of the amount of stored information in the image, while preserving the important attributes essential for classifying it. 

This has been helpful in reducing the number of parameters the image has, and in reduction of both the computational power 

needed to run the model and overfitting data [27]. 

d. Flatten() layer: This layer can transform the multidimensional image data into a single-dimensional array. This has been helpful 

in passing the data across the model from the preceding convolutional layers that yields multidimensional outputs to its subsequent 

dense layers that requires one-dimensional inputs [28]. 

e. Dense layers: In these layers, neurons in the previous layer send inputs to each neuron in this layer. This layer assists in the output 

classification of the fruit image according to the input from convolutional layers, which were resized through flatten() [29]. 

f. Loss functions: Loss functions assist in comparing the target and predicted output values. This helps to find the difference or 

“loss” between them, basically by yielding the amount the model missed for the actual answer. This functions as a measure of how 

efficiently the neural network can predict the classes precisely [30]. 

g. Optimizer: This is an algorithm that transforms the model’s parameters to decrease the loss function’ value, generally by 

predicting the combination of weights and biases of the neural network that will result in the maximum accuracy [31]. 

 
Chart-3: A CNN, simplified [32] 

 

 
Chart-4: A CNN classifying vehicle images, using ReLu as the activation function for the convolutional layers, and softmax as the 

activation function for the dense layer [33] 
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ix. Model’s parameters 

The parameters such as the x_train data, the y_train data, the x_validation data, the y_validation data, and the batch size remained fixed 

while the model was run using model.fit. The purpose of the training data was to allow the model to iterate through it multiple times 

and accordingly update its weights and biases to increase accuracy. The purpose of the validation data was to verify whether the model 

continued to be accurate on concealed data (as the model was not allowed to update its weights and biases pertaining to validation data) 

and observe if the model was overfitting, and if the batch size was the number of training samples the model has to work through before 

its weights and biases were updated. Finally, the number of epochs was the number of times the model should iterate through the entire 

training dataset, and this was one of the independent variables in this research [34]. 

 

x. Performance Metrics 

Metrics were used to assess the performance of the model. These include accuracy and area under the Receiver Operating Characteristics 

(ROC) curve [35]. The metrics are the same as the loss functions, except that they were not considered by the model itself during data 

training but were observed for comparison of different models, as followed in this study.  

Accuracy metric denotes the quotient of the number of correct predictions divided by the total number of predictions made and was 

usually presented as a decimal. The ROC curve showed the performance of a classification model at all classification thresholds, namely 

plotting the model’s true positive rate (TPR, number of correct “yes” predictions) on the y-axis and false positive rate (FPR, number of 

incorrect “yes” predictions) on the x-axis, with both axes having a minimum value of 0 and a maximum of 1. 

The definition for TPR, a synonym of recall is as follows [36]:                                                                                                   

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(1) 

The definition for FPR is as follows [36]:                                                                                                

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(2) 

 

The area under the ROC curve used integration to find the AUC value, with a minimum AUC of 0.0 and a maximum AUC of 1.0, the 

latter of which signifies the most ideal capture rate for the model [36]. 

 

xi. Ablation Study 

Round 1 Testing 

For the first round of testing, the model was run with every possible normalization-epoch number pair that could be formed out of three 

different types of normalization and three different numbers of epochs. The three epoch lengths that were tested include: 15 epochs, 30 

epochs and 45 epochs. 

The three normalizations tested were as follows: 

a. Batch Normalization: 

As the distribution of values along the activation functions constantly changes during the data’s training, the process was slowed as each 

layer needed to adapt to a new distribution. This problem was known as internal covariate shift. Batch normalization solved this problem 

by forcing the input of every layer to have approximately the same distribution in every training step, using the following processes: 

Calculating the mean and variance of the layers input using the below formulas [37]:  

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

Batch mean 

(3)                                                                                                                                                                                        

𝜎𝐵
2 =

1

𝑚
∑(𝑥𝑖 − 𝜇𝐵)2   Batch variance, here σ is standard deviation from mean

𝑚

𝑖=1

. 

(4) 

Normalizing the layer inputs using the batch statistics calculated in step A as below [37]: 

𝑥̅𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

 

(5) 

Scaling and shifting to obtain the output of the layer by using the below formula  [37]. Please note that γ and β were learned during 

training along with the original parameters of the network. 

𝑦𝑖 = 𝛾𝑥𝑖̅ + 𝛽 

(6) 

b. Layer Normalization: 

This works across every batch in a layer and ensures that all neurons in a particular layer effectively have the same distribution across 

all features for a given input. This removes the dependence on batches that batch normalization has, allowing the use of smaller batches 

or batches of varying size, unlike in batch normalization. Note that if each image of a fruit has d features, it’s a d-dimensional vector. 
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 If there were B elements in a batch, layer normalization was done along the length of the d-dimensional vector but not across the batch 

of size B. The following are the steps involved in layer normalization [38]. 

𝜇𝑙 =
1

𝑑
∑ 𝑥𝑖

𝑑

𝑖=1

 

(7) 

𝜎𝑙
2 =

1

𝑑
∑(𝑥𝑖 − 𝜇𝑙)

2

𝑑

𝑖=1

 

(8) 

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝑙

√𝜎𝑙
2

 

(9) 

𝑜𝑟 𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝑙

𝜎𝑙
2 + 𝜖̅̅ ̅̅ ̅̅ ̅̅

 

                                                                                  Adding 𝜖 helps when 𝜎𝑙
2 is small                                                                 (9) 

 

𝑦𝑖 = 𝐿𝑁(𝑥𝑖) = 𝛾 ⋅ 𝑥̂𝑖 + 𝛽 

(10) 

These steps remained near-identical to those undertaken during batch normalization. However, instead of the batch’s statistics, we used 

the mean and variance corresponding to the specific input to the neurons in a particular layer “k”. This was equivalent to normalizing 

the output vector from the layer “k-1” [38]. 

 

c. Group Normalization: 

This form of normalization divided the channels into groups and normalized the features within each group (channels were a specific 

map of attributes of the image produced by applying filters to the input data through convolution). Group normalization does not exploit 

the batch dimension, and its computation was independent of batch sizes. It also conducts the normalization, for example: unlike batch 

normalization which normalizes across examples in a batch. The main idea behind group normalization was to provide a normalization 

technique that remains independent of the batch size. This can be beneficial in cases where each data sample has high memory-

consumption. The following are the steps involved in group normalization [39]. 

𝜇𝑖 =
1

𝑚
∑ 𝑥𝑘

𝑘∈𝑆𝑖

 

(11) 

𝜎𝑖
2 =

1

𝑚
∑(𝑥𝑘 − 𝜇𝑖)

2

𝑘∈𝑆𝑖

 

(12) 

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝑖

√𝜎𝑖
2 + 𝜖

 

(13) 

In the above equations, i is an index and x is the feature computed by the layer. A group norm layer formally computes 𝜇 and 𝜎 in a set 

𝑆𝑖 defined as: 𝑆𝑖 = {𝑘 | 𝑘𝑁 = 𝑖𝑁, ⌊
𝑘𝑐

𝐶∕𝐺
⌋ = ⌊

𝐼𝑐

𝐶∕𝐺
⌋}. In this definition, G is the number of groups, which is a predefined hyperparameter 

(G=32) by default. The number of channels per groups is represented by C/G, and ⌊ is the floor operation. The last term here means that 

the indexes i and k are in the same group of channels, believing each group of channels are stored in a sequence along the C axis [39]. 

 

Round 2 Testing 

For the second round of testing, the model was run with every possible activation function-optimizer pair that could be formed out of 

three different activation functions and three different optimizers.  

The three activation functions that were tested are as follows: 

a. Rectified Linear Unit (ReLu): 

This was a piece-wise linear function that will output the input directly if it was positive; otherwise, it will output zero. This activation 

function was used to help the model train easily and in achieving better performance. It involved simple computations, with an output 

value equal to zero and worked like a linear function, making it easier to optimize. The formula employed was:  

                                                                         f(x) = max(0,x) with a range of 0 to infinity [40].                                                         (14) 

b. Hyperbolic Tangent Function (Tanh): 

The tanh function yielded values in the range of -1 to +1 and was zero-centered. This showed that the output of tanh functions was 

symmetric over the origin of the coordinate system, which has been considered an advantage as it could aid the learning algorithm 

converge faster. Nonetheless, the tanh has some limitations including its gradients that can become very small (i.e., closer to zero) during 

backpropagation. This limitation can be challenging, especially for deep networks with several layers as the gradients of the loss function 

may become too small to produce substantial changes in the weights during training as they backpropagate to the initial layers. This 

problem has been known as the vanishing gradient problem, which can largely reduce the training process, leading to poor convergence.  
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The function is defined by: 

                                                        f(x) = (e^x - e^-x) / (e^x + e^-x), with a range between -1 and +1 [41].                                        (15) 

c. Sigmoid Function:   

The sigmoid function was a smooth, continuously differentiable function, which carried a real-valued input and squashed it to a value 

between 0 and 1. It had an "S"-shaped curve that asymptotes to 0 for large negative numbers and 1 for large positive numbers. The 

function allowed for efficient backpropagation training but suffered from a vanishing gradient problem as well. It can be defined as: 

                                                                    f(x) = 1 / (1 + e^-x), with a gradient between 0 and 1 [41].                                               (16)  

The three optimizers tested were as follows: 

a) Root Mean Square Propagation (RMSProp): 

RMSProp was a gradient descent algorithm that worked by calculating the gradient of the loss function with respect to the model’s 

parameters and updating the parameters in the opposite direction of the gradient to minimize the loss. RMSProp used an exponential 

decay that discards history from the extreme past so that it could converge rapidly after finding a convex bowl (a loss function with a 

single minimum point) [42]. 

The RMSProp algorithm updated the parameters using the following equations:  

Calculating the gradient:  

                                                                     gt = ∇θ J(θ), where J(θ) is the loss function                                                                       (17) 

Accumulating squared gradients:  

                                                E[g²]t = βE[g²]t-1 + (1-β)gt², where β is the decay rate, typically set to 0.9                                           (18) 

Computing the adaptive learning rate:  

ηt = η / √(E[g²]t + ε),  

where η is the initial learning rate and ε is a small constant to prevent division by zero, often set to 1e-8                                   (19) 

 

Updating the parameters:  

                                                                                               θt+1 = θt - ηt * gt                                                                                      (20) 

These steps were repeated for each parameter in the network until convergence or the maximum number of iterations were reached [43]. 

b) Stochastic Gradient Descent (SGD): 

The term “stochastic” in SGD refers to the random selection introducing randomness into the optimization process. In SGD, a single 

random training example (or a small batch) was selected to calculate the gradient and update the model parameters, instead of the entire 

dataset as used in traditional methods, whereby the computational cost per iteration can be reduced [44]. The advantage of using SGD 

is its computational efficiency, especially when using large datasets. The formulas used are as follows  [45]: 

𝐸(𝑤, 𝑏) =
1

𝑛
∑ 𝐿(𝑦𝑖𝑓 (𝑥𝑖))

𝑛

𝑖=1

+ 𝛼𝑅(𝑤) 

(21) 

For 𝑤∀ 𝜖 0, 

𝑦𝑖 = 𝜌 +
𝑤

𝑏
𝜉 −

1

𝑣𝑖

∑ max(0, 𝜌 − (𝑤, 𝑥𝑖))

𝑖

𝑛=0

, 

(22) 

min
𝑤,𝑝,𝜉

𝑣

2
‖𝑤‖2 + 𝑏𝜈𝜉 −

1

𝑛
∑ min((𝑤, 𝑥𝑖) + 𝑏) ,

𝑛

𝑖=1

 

(23) 

𝑅(𝑤) =
1

2
∑ 𝑤𝑗

2

𝑚

𝑗=1

= ‖𝑤‖2 ,
2  

(24) 

𝑅(𝑤) = ∑|𝑤|𝑗 ,

𝑚

𝑗=1

 

(25) 

𝑅(𝑤) =
𝜌

2
∑ 𝑤𝑗

2

𝑛

𝑗=1

+ (1 − 𝜌𝜉) ∑ |

𝑛

𝑗=1

𝑤|𝑗. 

(26) 

c) Adaptive Moment Estimation (Adam): 

Adam, an adaptive learning algorithm was used to modify each parameter’s learning rate depending on its gradient record. This 

adjustment facilitated the neural network to learn efficiently altogether. Adam employed an approach called momentum, which speeds 

up the training by accelerating gradients in the right directions by appending a fraction of the previous gradient to the present one. It 

also used parts of RMSProp, which helped in controlling overshooting (missing the minimum point) by adjusting step size [46]. The 

formulas used are as follows [47]: 
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𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) [
𝛿𝐿

𝛿𝑤𝑡

] 

(27) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [
𝛿𝐿

𝛿𝑤𝑡

]
2

 

(28) 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 𝑣̂𝑡 =

𝜈𝑡

1 − 𝛽2
𝑡 

(29) 

𝑤𝑡+1 = 𝑤𝑡 − 𝑚̂𝑡 (
𝛼

√𝑣̂𝑡 + 𝜀
) 

(30) 

Round 3 Testing 

For the third round of testing, the model was run with every possible Conv2D layer number-loss function pair that could be formed out 

of three different numbers of Conv2D layers and three different loss functions. The three numbers of Conv2D layers that were tested 

include: 3 layers, 4 layers and 5 layers. 

The three loss functions tested were as follows: 

a) Categorical Cross-Entropy: 

Categorical cross-entropy is a loss function that was used in multiclass classification tasks, primarily popular because of its probabilistic 

nature, wherein it allows the model to output the probabilities of each class. However, it required one-hot encoding to function, which 

acts as a disadvantage. The formula used is as follows [48]: 

𝐻(𝑦, 𝑦̂) = − ∑ 𝑦𝑖 log(𝑦̂𝑖)𝐻(𝑦, 𝑦̂)

𝑖

= − ∑ 𝑦𝑖 log(ŷi)𝐻(𝑦, 𝑦̂𝑖)

𝑖

= − ∑ 𝑦𝑖 log(𝑦̂𝑖)

𝑖

 

(31)                      

Here y is true probability distribution (usually in the form of one-hot encoded vectors) and 𝑦̂ is predicted probability distribution [48]. 

b) Kullback-Leibler divergence (KL Divergence): 

KL Divergence is a nonsymmetric metric that measures the relative entropy or difference in information represented by two distributions. 

It can be assumed as measuring the distance between two data distributions showing how different the two distributions are from each 

other, and how it is utilized to ensure that input or output data in production doesn’t drastically change from a baseline. The baseline 

can be a training production window of data or a training or validation dataset. The formula used is as follows [49]: 

𝐷𝐾𝐿(𝑝(𝑥)||𝑞(𝑥)) = ∑ 𝑝(𝑥)

𝑥∈𝑋

ln
𝑝(𝑥)

𝑞(𝑥)
 

(32) 

c) Focal Loss: 

This function is a variation of cross-entropy, addressing class imbalance during training. Focal Loss applied a modulating term to the 

cross-entropy loss in order to focus learning on “hard misclassified” examples. Essentially, this scaling factor automatically down-

weighs the contribution of easy examples during training and rapidly focuses the model on hard examples. It is a dynamically scaled 

cross-entropy loss, where the scaling factor decays to zero as confidence in the correct class increases. Focal Loss is defined as [50]:  

𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) 

(33) 

3. RESULTS 
i. Data from Round 1 Testing 

During round 1, for all tests, the activation function for the convolutional layers was sigmoid; optimizer was RMSProp; loss function 

was categorical cross-entropy; and number of Conv2D layers were four. The data gathered from round 1 testing are given in Table-2. 

Based on the validation data analyzed, 15 epochs had the lowest mean accuracy and mean AUC (Area Under ROC Curve). Conversely, 

30 epochs had the highest mean accuracy and second highest mean AUC, with 0.007 lower than the top score. Similarly, 45 epochs had 

the second highest mean accuracy, with 0.026 lower than the top score; and the highest mean AUC. Hence, 30 epochs was selected as 

the optimal size. Layer normalization had the highest mean accuracy and mean AUC, and was, therefore, selected as the optimal 

normalization method.  

Table-2: Data gathered from Round 1 

 
Type of 

normalizatio

n 

 
Batch 

Normalization 

Layer 

Normalization 

Group 

Normalization 

Mean for 

training 

Mean for 

validation 

Number of epochs   Train Val Train Val Train Val   

15 epochs  Accuracy 0.953 0.8756 0.9722 0.9106 0.9568 0.8454 0.9607 0.8772 

  AUC 0.9984 0.9869 0.9993 0.992 0.9986 0.9823 0.9988 0.9871 
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   Train Val Train Val Train Val   

30 epochs  Accuracy 0.9755 0.9186 0.9807 0.9201 0.9758 0.8966 0.9773 0.9118 

  AUC 0.9993 0.9913 0.9995 0.9913 0.9993 0.9866 0.9994 0.9897 

   Train Val Train Val Train Val   

45 epochs  Accuracy 0.9807 0.8482 0.9895 0.922 0.9789 0.8859 0.9830 0.8854 

  AUC  0.9765 0.9997 0.9881 0.9993 0.9849 0.9995 0.9832 

Mean accuracy   0.9697 0.8808 0.9808 0.9176 0.9705 0.8760   

Mean AUC   0.9989 0.9849 0.9995 0.9905 0.9991 0.9846   

 

These findings suggest that since an epoch size of 30, and layer normalization result in the most accurate model, the data can now be 

transformed to the best possible degree and could be iterated through the most efficient number of times (within the study’ limitations). 

Next, the three activation functions and three optimizers could be tested, with a total of nine possible combinations between them. 

 

ii. Data from Round 2 Testing 

During round 2, for all tests, normalization was layer normalization; number of epochs was 30; loss function was categorical cross-

entropy; and number of Conv2D layers were four.  

The data gathered in round 2 testing are given in Table-3. Based on the validation data analyzed, ReLu had the highest accuracy and the 

second highest AUC, with 0.0039 lower than the top AUC. Tanh had the lowest accuracy and the lowest AUC. Sigmoid had the second 

highest accuracy, with 0.0245 lower than the top accuracy, and the highest AUC. Notably, sigmoid missed out on the top spot more than 

ReLu missed out on the top spot. This suggests that ReLu would be the best activation function. 

RMSProp had the highest accuracy and the lowest AUC, with 0.0021 lower than the top spot for AUC. SGD had the lowest accuracy 

and the highest AUC. Adam had the second highest accuracy, with 0.0088 lower than the top spot for accuracy; and the second highest 

AUC, with 0.0014 lower than the top spot for AUC. Therefore, RMSProp could be implied as the best optimizer available, as it had the 

highest accuracy and a relatively low difference between its AUC and the highest AUC. 

 

Table-3: Data gathered from Round 2 

 Optimizer RMSProp Stochastic Gradient 

Descent 

Adam Mean for 

training 

Mean for 

validation 

Activation Function  Train Val Train Val Train Val   

ReLu Accuracy 0.9928 0.9509 0.9947 0.9348 0.9944 0.943 0.9940 0.9429 

 AUC 0.9997 0.9878 0.9998 0.9913 0.9998 0.9896 0.9998 0.9896 

  Train Val Train Val Train Val   

Tanh Accuracy 0.9658 0.8838 0.9493 0.876 0.9681 0.8741 0.9611 0.8780 

 AUC 0.999 0.9859 0.9983 0.99 0.9992 0.9863 0.9988 0.9874 

  Train Val Train Val Train Val   

Sigmoid Accuracy 0.987 0.9362 0.9304 0.8916 0.9534 0.9274 0.9569 0.9184 

 AUC 0.9996 0.9939 0.9974 0.9927 0.9983 0.9939 0.9984 0.9935 

Mean accuracy  0.9819 0.9236 0.9581 0.9008 0.9720 0.9148   

Mean AUC  0.9994 0.9892 0.9985 0.9913 0.9991 0.9899   

 

These findings emphasize that since a ReLu activation function and an RMSProp Optimizer result in the most accurate model, the model 

has now found the best way to adjust the weights and biases of its neurons and chooses the most efficient neurons to activate. Next, the 

three loss functions and three possible numbers of convolutional layers could be tested, with a total of nine possible combinations 

between them. 
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iii. Data from Round 3 Testing 

During round 3, for all tests, normalization was layer normalization; number of epochs was 30; activation function for the convolutional 

layers was ReLu; and the optimizer was RMSProp. 

The data gathered in round 3 testing are given in Table-4. Based on the validation data analyzed, the model with 3 layers had the highest 

accuracy and the highest AUC. The model with 4 layers had the second highest accuracy, and the least AUC. The model with 5 layers 

had the lowest accuracy and the second highest AUC. Hence, 3 layers was chosen as the optimal number of Conv2D layers. The model 

with categorical cross-entropy had the lowest accuracy and the lowest AUC. The model with KL Divergence had the second highest 

accuracy and the second highest AUC. The model with Focal Loss had the highest accuracy and the highest AUC. Hence, Focal Loss 

was chosen as the optimal loss function. 

These findings suggest that since a Focal Loss function and three convolutional layers result in the most accurate model, this enabled to 

find the best series of optimizations (within the study’ limitations), and have, thus obtained the result. 

 

Table-4: Data gathered from Round 3 

 
Loss 

function 
 

Categorical cross-

entropy 
KL Divergence Focal Loss 

Mean for 

training 

Mean for 

validation 

Number of 

Conv2D Layers 
  Train Val Train Val Train Val   

3  Accuracy 0.9957 0.9459 0.9942 0.9533 0.996 0.9496 0.9953 0.9496 

  AUC 0.9996 0.9857 0.9992 0.9876 0.9999 0.9949 0.9996 0.9894 

   Train Val Train Val Train Val   

4  Accuracy 0.9939 0.9298 0.9928 0.9469 0.9942 0.9524 0.9936 0.9430 

  AUC 0.9995 0.9809 0.9995 0.9867 1 0.9946 0.9997 0.9874 

   Train Val Train Val Train Val   

5  Accuracy 0.9898 0.9401 0.9887 0.9334 0.9839 0.9409 0.9875 0.9381 

  AUC 0.9995 0.9869 0.9994 0.9869 0.9998 0.9935 0.9996 0.9891 

Mean accuracy   0.9931 0.9386 0.9919 0.9445 0.9914 0.9476   

Mean AUC   0.9995 0.9845 0.9994 0.9871 0.9999 0.9943   

 

4. DISCUSSION 
In recent years, CNNs have demonstrated significant promise in addressing the challenge of identifying fresh and spoiled fruits. 

However, the currently available machine-learning based solutions to detect fruit freshness are not suitable for large-scale use. In this 

study we aimed to develop and optimize a CNN model for the classification of five popular fruits (i.e., apples, bananas, mangoes, 

oranges, and strawberries), across 10 distinct classes, using a dataset of 28,509 images. Performance of the model was assessed through 

both the AUC of the ROC curve and model accuracy, with a focus on optimizing hyperparameters to achieve the best results in these 

metrics. Unlike previous studies, this research emphasizes hyperparameter optimization rather than comparing different deep learning 

models, aiming to enhance the model’s classification accuracy and AUC through a three-stage process that modifies key components 

such as activation functions, optimizers, loss functions, normalization methods, and other such features involved in supporting each 

prediction. In this study, training accuracy of 99.6%, validation accuracy of 94.96%, training AUC of 0.9999 and a validation AUC of 

0.9949 were the final output obtained with the optimized hyperparameters comprising layer normalization, 30 epochs, ReLu as the 

activation function for the convolutional layers, three convolutional (Conv2D) layers and Focal Loss as the loss of function.  

In a study, Miah et al. used a dataset of 5,658 images to discriminate fresh and spoiled fruits across various categories, with the model 

achieving a validation accuracy of 97.34% [51]. In another study by Nirmaladevi and Kiruthika, the focus was on classifying a narrower 

range of fruit categories, namely apples, bananas, and tangerines, using a dataset of 9,000 images [10]. This study reported a slightly 

higher validation accuracy of 98.89%. However, the limited number of fruit classes restricts the applicability of the model to broader 

real-world scenarios. Additionally, the reliance on accuracy alone as the performance metric may not provide a comprehensive view of 

the model’s reliability. In contrast, our model leverages a much larger dataset of 28,509 images, offering a greater diversity of training 

and validation data. Furthermore, we assessed our model using both accuracy and the AUC metric, allowing for a more thorough 

evaluation of its classification performance and ability to distinguish between classes. This multidimensional approach ensures that our 

model’s predictions are not only precise but also generalizable. Additionally, by including five fruit classes- apples, bananas, mangoes, 

oranges, and strawberries, our model demonstrated superior versatility. The expanded dataset and the inclusion of diverse fruit types 

make our model more universally applicable for fruit classification and freshness assessment tasks, enhancing its reliability beyond the 

scope of the previous studies. 
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The inclusion of the AUC metric as an additional performance measure sets our model apart by providing valuable insights into its 

ability to handle imbalanced datasets and maintain robustness across varying decision-making thresholds, aspects that were not explored 

in previous studies.  

By using a larger dataset with diverse class representation and employing comprehensive evaluation metrics, our model not only achieves 

competitive accuracy but also ensures consistent performance under different conditions, making it a more reliable and scalable solution 

for fruit classification and freshness detection. However, our study does have some limitations, including constraints related to the 

variety of the dataset and the need for further research to validate findings in real-world scenarios. Despite these limitations, our study 

makes a substantial contribution to the field of food safety by offering vital insights into the detection and prevention of spoiled fruit 

adulteration.  

This research highlights the potential of combining machine learning and hyperspectral imaging, which together presents a promising 

way forward for developing robust quality assurance methods in the food industry. By advancing these technologies, we can significantly 

enhance the accuracy and reliability of food safety protocols, ultimately safeguarding consumer health and fostering trust. 

 

5. CONCLUSION 

Our research emphasizes the importance of food safety, with a particular focus on addressing safety concerns with fruit spoilage which 

is a significant public health concern besides impacting consumer’s trust. Our findings highlight the promising role of machine learning 

and hyperspectral imaging in accurately identifying fruit spoilage, with more than 98% accuracy achieved. This optimized model can 

be utilized to efficiently segregate rotten fruits from healthy ones, while also categorizing the fruits into groups based on the type of 

fruit they are by using only an image of the fruit, with different camera lens angles and qualities being considered during the dataset’s 

creation. This facilitates not only low- and middle-income farmers but also fruit-vendors and sales representatives, who require the swift 

and cost-effective strategies to detect fruits that this model shall provide. Future research may be warranted for analysis of larger datasets 

comprising a wide variety of fruits, with enhanced modeling techniques and further investigating supplementary analytical methods to 

improve detection capabilities.  
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