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ABSTRACT 

The multichannel nature of EEG a data poses a big 

challenge to the development of automatic EEG analysis and 

classification systems. Due to the “curse of dimensionality” 

problem, the analysis and classification of several channels 

may not lead to the desired performance. Accordingly, a 

number of algorithms have been proposed to identify small 

“static” subsets of channels that are capable of 

differentiating between samples of different classes. 

However, the identification of small subsets of relevant 

channels may not always be possible, where for certain 

applications the smaller the number of channels the less 

chance that sufficient information is provided. The propose 

in this project is a dynamic channel selection using 

Grassberger–Procaccia algorithm that identifies a channel 

(or a subset of channels) for each time segment of the signal 

that is relevant to the class of that particular time segment. 

To achieve this, we embraced the Grassberger–Procaccia 

algorithm methodology, and particularly the multiple 

classifier behaviour approach. Each EEG channel can be 

chosen to represent a certain unseen time segment of the 

signal based on the performance, or local accuracy, of its 

nearest neighbours in the set of training time segments. 

Results obtained using EEG data of a four-class alertness 

state classification problem reveal that the proposed 

approach is capable of achieving competitive performance 

compared to a traditional static channel selection based 

method. The algorithm also produced very encouraging 

results when a method developed by Grassberger Procaccia 

allows estimation of the dimensional complexity of the 

state‐space attractor of a time series. Saturation of 

dimensional‐complexity estimates with increasing values of 

embedding dimension is considered a strong indication that 

the time series is governed by deterministic chaos. The 

present investigation employed the Grassberger‐Procaccia 

method to estimate EEG dimensional complexity in a 

multi‐subject, factorial experiment. 
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1. INTRODUCTION 
 

The Electroencephalography (EEG) signals have started to 

play increasingly important roles for many applications. These 

include the diagnosis of sleep disorders predicting epileptic 

seizures, building brain-computer interfaces detecting drivers’ 

drowsiness, recognizing alertness state movement control and 

control of powered prosthetics for amputees and rehabilitation. 

It is well known that the utilization of multiple channels is 

essential for many of those applications. However, the usage 

of a large number of channels might have negative impact on 

the performance of automated analysis/classification systems, 

as this could increase the complexity of such systems. In this 

paper we consider the task of channel selection, i.e., selecting 

the most informative subset of channels that can achieve the 

best possible performance for a given EEG classification task. 

Most of the existing EEGchannel selection methods adopt a 

”static” selection approach, where a fixed subset of channels is 

identified and used to classify each and every time segment of 

the data. One of the advantages of the static approach is that 

the saving in computational effort is known a priori – it is 

simply the ratio of the number of selected channels to the total 

number of channels. Although static channel selection may 

enable the detection of redundant channels and the 

identification of channels that are highly influenced by noise, 

it is difficult to ascertain whether a subset of channels selected 

for one subject is also useful for other subjects, or to draw 

generalized conclusions about the most relevant channels for a 

given classification task across subjects.Also, since static 

methods cannot adapt to the specific data, valuable 

information may be lost or undetected. Dynamic channel 

selection, on the other hand, aims at using the results of the 

classification system to dynamically select which channel(s) to 

analyse for each time epoch. This provides the ability to adapt 

to changes in the EEG data by selecting the most relevant, 
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informative and noise free channels for each time segment of 

the data. However, the implementation of dynamic channel 

selection is far more challenging than its static counterpart.  

2. DESIGN ANALYSIS 

EEG Recording and Setting: EEG signals were recorded by a 

24-channel electro-cap. The positions of the Ag/AgCl 

electrodes followed the international 10–20 system (see Figure 

1). Electrode gel was applied to the electrodes to keep the 

impedance below 10 K Ohm. The ground channel was at the 

forehead, and the reference channels were at the mastoids (A1 

and A2). The remaining 21 channels were all used to record 

EEG signals for analysis. Electrooculography (EOG) signals 

were recorded by the electrodes attached at the right side of 

the right eye and above of the left eye, respectively. Both EEG 

and EOG were amplified, band-pass filtered (0.5–100 Hz), and 

converted to digital signals with a sampling rate of 500 Hz 

using the NuAmp amplifier produced by NeuroScan Inc. The 

ocular artifacts were then removed from the EEG signals using 

the artifact removal software tool provided by the NeuroScan. 

The processed EEG signals were all stored in a personal 

computer for further offline analysis. 

 

 

Fig. 1. Electrode placement 

Table 1: List of Electrode Placement 

Electrode lobe 

F FRONTAL 

T TEMPORAL 

 

C 
CENTRAL 

 

P 
PARIETAL 

 

O 
OCCIPITAL 

 

Preparation: The first four subjects sat in a wheelchair ( Sub1 

and Sub3) or normal armchair (Sub2 and Sub4) while facing a 

20-inch computer screen. The Sub5 reclined in the bed. We 

projected the computer screen on the wall synchronously by a 

projector so that the instructions presented during the 

experiment could be clearly perceived by the Sub5. Three 

kinds of motor imagery tasks were designed in this study to 

test the classification accuracy of each motor imagery and no 

imagery (i.e., resting), including grasping an object by left 

hand (LH), grasping an object by right hand (RH), and 

stepping across a line in front of the subject with left foot (LF). 

All patients were provided with three pictures showing the 

three kinds of movements, respectively (Figure 2). They were 

asked to practice the imagination of the motions during the 

preparation stage (the stage of applying electro-gel to the 

21electrodes). They were also informed of the motion 

decomposition in each movement in order to ensure the motor 

imagery contents across the subjects were consistent. For 

example, the movement of left foot stepping was decomposed 

to two motions: standing then stepping across the line with the 

left foot, as shown in Figure 2 

 

 

 
 

Fig. 2. .Motor imagery  tasks 

 

Feature Extraction: 

The GP algorithm estimates the correlation dimension (D2) or 

FD of an attractor in phase-space domain. Let x = [x(1), x(2), . 

. . , x(N)] denote the EEG signal of 3 s, where N is the length 

of the signal (N = 500 Hz × 3 s = 1500). The EEG signal can 

be reconstructed as a set of M-dimensional vectors as 

y(i) = [x(i), x(i + τ), x(i + 2τ), . . . , x(i + (M − 1)τ)], i = 1, 2, . . . , N − 

(M − 1)τ                                                                              ... (1)… 

where τ is the time delay and M is the embedding dimension. 

The time delay is a free parameter which needs to be 

determined experimentally.  

 

…(2)… 

stands for the probability that the set of the distance between 

two different reconstructed vectors y(i) and y(j) (i.e., |y(i) − 

y(j)|, ∀i 6= j) fall into the cell of size r at a given embedding 

dimension M, where H is a Heaviside function defined as H(y) 

= 1 if y > 0; H(y) = 0 otherwise. The correlation dimension dc 

is given by 

       …(3)… 

The slope of log C(r) versus log r at a given M can be 

estimated over the region where log C(r) is approximately 

linear in log r by linear least-squares fitting. The slope of the 

line is the dc value at the given M. Moreover, the value of dc 

gradually increases with increase of M, and then achieves 

saturation. The saturation value is defined as the FD [29]. 

However, in numerical computation, the saturation value 

would not maintain at a constant, but varies slightly as the M 
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value further increases. Accordingly, the FD was determined 

based on the steps as follows, 

 

Step 1. Initialize M = 2; 

 Step 2. M = M + 1; 

 Step 3. Calculate the dc value at the given M; 

 Step 4. Repeat step 2 and step 3 until |dc (M) − dc(M − 1)| < 

e; Step 5. FD = dc (M). 

Where e is a positive number (we set e = 0.001). An 

excessively large value of epsilon could result in an M value 

for which the corresponding dc value has not yet saturated 

(e.g., M < 10). On the contrary, an excessively small value of 

epsilon could lead to the problem that no M value can be 

obtained. In this study, the e value was decided by trial and 

error. By using the setting of e = 0.001, the FDs of all EEG 

signals were obtained, and their M values were within the 

range of M > 10. Examples of the dc − M plots are shown in 

Figure 4, where each curve was calculated based on a 3-s EEG 

signal of a mental task. The four curves were based on the 

signals of resting, LH imagery, RH imagery, and LF imagery, 

respectively (all from patient Sub1 and recorded at F7). It can 

be observed from Figure 4 that the M values corresponding to 

the FDs (the dc values marked in black square) for the four 

different tasks are different (M = 23, 20, 21, 13 for the four 

tasks). According to our experiment, the GPFDs of all the 

EEG signals were found within the range of M = 10 to M = 30. 

Also, the M values associated with the GPFDs for different 

trials and different participants were not necessarily the same, 

depending the result by the aforementioned steps for the FD 

calculation. 

Plots of dc against M for four 3-s EEG signals recorded under 

resting, left hand imagery, right hand imagery, and left foot 

imagery, respectively, and were all recorded at F7 from the 

patient participant Sub1. The correlation dimension ݀݀ value 

marked in black in each curve is the FD estimated by the GP 

method. In this example, the ݀݀ values for resting, left hand, 

right hand, and left foot conditions reached the plateau before 

ܯ  = 30 (i.e., ܯ  = 23, 20, 21, and 13, respectively). The FDs of 

the four signals are 4.2479, 3.4062, 3.9438, and 3.4577, 

respectively. The time delay was set as 50 for the four ca 

 

 

Fig. 3. Plots foe different subjects 

3. RESULTS AND DISCUSSION 

The average K-NN classification accuracies over the five 
subjects participants among different feature extraction 
methods, where the results shown in the three subplots are 
based on all 21 EEG channels (without channel selection), the 
top five channels, and the best channel, respectively. We used  
rank sum test to statistically examine the difference of 

classification accuracy between different feature extraction 
methods, because the one-sample test rejected the null 
hypothesis of normal distribution of the data (p < 0.05). Tables 
2–4 list the top five channels and the corresponding RH-R, LH-
R, and LF-R classification conditions. Different subbands in 
beta band may have different levels of beta rebound induced by 
a motor imagery . Therefore, we divided the mu and beta bands 
into five subbands, and computed the BP of the five subbands 
for the purpose of comparison. 

Table 2: Accuracy of the Feature for Different 

4. CONCLUSION 

Motor imagery BCI has shown success on able-bodied 
individuals. Yet, there is still limited efficency in late-stage sub 
, which may be due to the fact that typical features, spectral 
information in the mu and beta bands, may not be as 
discriminative for sub . To deal with this problem, we have 
proposed in this paper a method by combining the GPFD 
feature channel selection strategy. Although the two separate 
methods have already been used in the BCI community, the use 
of GPFD and its combination with channel selection is novel 
for sub motor imagery classification. Our results have 
demonstrated that the proposed use of GPFD is superior to 
other features that have been used in previous studies involving 
subjects, and is able to achieve high accuracy (~90%) even 
when there is only one channel (the one selected by the 
proposed automatic subject-independent channel selection 
strategy). In summary, based on the results, it can be concluded 
that the contribution of the proposed method is three-fold. First, 
the use of the GPFD feature can provide motor imagery BCIs 
for subjects with higher accuracy. Second, the combination of 
the GPFD feature and channel selection strategy is able to 
automatically determine the best subject-dependent channel 
configuration from 30 EEG recording sites. Based on only a 
few selected channels, the GPFD can still maintain high 
average accuracy, which greatly improves the usability of the 
BCI for subjects discriminating channels for different subjects 
of motor imagery classification do not fall on the sensorimotor  
area. To our knowledge, this is a new finding in the EEG-based 
BCI community, and also supports the fMRI evidence that 
there is a spatial shift of function in the motor area in different 
subjects. 
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