
Kumawat Rekha; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2287

ISSN: 2454-132X

Impact factor: 4.295

(Volume 4, Issue 3)

Available online at: www.ijariit.com

Datagram transport layer security in Java

Rekha Kumawat

rekhakumawat19@gmail.com

Vivekanand Education Society's Institute of Technology, Mumbai, Maharashtra

ABSTRACT
This paper explains transport layer security implemented in

Java 9 based on datagram protocol. Building secure software

requires the use of a wide variety of security controls, at

different layers of the application. Java 9 security

enhancement support transport-independent and light-

weight DTLS version 1.0 and 1.2. Datagram Transport Layer

Security (DTLS) protocol is designed to construct “TLS over

datagram” traffic that doesn't require or provide reliable or

in-order delivery of data. DTLS is a datagram-compatible

variant of TLS. The DTLS API provides communications

privacy for datagram protocols that allow client/server

applications to communicate in a way that is designed to

prevent eavesdropping, tampering, or message forgery

through SSL Engine. DTLS are the best solution for

encrypting and transmitting real-time data. The use of the

DTLS API in Java provides access to the application data in

each DTLS message.

Keywords: Java, Security API, DTLS, DTLS implementation

1. INTRODUCTION
The Java security APIs spans a wide range of areas. Transport

security is a point-to-point security mechanism that can be

used for authentication, message integrity, and confidentiality.

The advantages of using transport-layer security include the

following:

• It is relatively simple, well-understood, standard technology.

• It applies to both a message body and its attachments.

Java already has support for TLS which provides secure

communication based on reliable transport layer such as TCP.

But there is no support for secure communication over

datagram transport layer such as UDP. TLS cannot be used

over datagram transport layer because it cannot tolerate out of

order packets and data loss. The reason that TLS cannot be

used directly in datagram environments is simply that packets

may be lost or reordered. TLS has no internal facilities to

handle this kind of unreliability, and therefore TLS

implementations break when rehosted on datagram transport.

The purpose of DTLS is to make only the minimal changes to

TLS required to fix this problem. Java 9 will add the support

for DTLS (Datagram Transport Layer Security) which can

work over datagram transport layer. This will largely help

applications which use UDP. The JDK provides APIs and an

implementation of the DTLS protocols that includes

functionality for data encryption, message integrity, and server

and client authentication. The new API should be transport-

independent and similar to javax.net.ssl.SSLEngine.

It creates client and server on the same host in the same JVM

and tries to exchange text messages between them via

DatagramSocket, and then validates that exchange is done

correctly. The implementation uses SSLEngine class to

translate application data (text message) to network

(encrypted) data and vice-versa. DatagramSocket class is used

to send and receive the network data. A client-server

handshake also should be done separately before app data

exchange. The DTLS implementation should consume or

produce at most one TLS record for each unwrap or wrap

operation so that the record can be delivered in the datagram

layer individually or can be reassembled more easily if the

delivery is out of order. The DTLS API should provide access

to the application data in each DTLS message.

2. DTLS HANDSHAKE
Before application data can be sent or received, the DTLS

protocol requires a handshake to establish cryptographic

parameters. This handshake requires a series of back-and-forth

messages between the client and server by

the SSLEngine object. Up to 15 handshake messages

distributed over 6 flights are needed to establish a secure

connection. The DTLS handshake includes the following

stages:

1. Negotiating the cipher suite

2. (Optional) Authenticating the server's identity

(optional)

3. Agreeing on encryption mechanisms

The DTLS handshake, shown in Figure 1, is nearly identical to

that of TLS.

2.1 How it works

DTLS uses the cookie exchange technique. DTLS

incorporates mechanisms to retransmit the packet. For

instance, if the client sends a ClientHello, it expects to receive

a HelloverifyRequest message from the server. If this doesn’t

happen, it means that either the ClientHello or the

HelloVerifyRequest is lost, hence after a certain amount of

time the client will resend the ClientHello. The purpose of the

HelloVerifyRequest is though not related with the

../../../omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V4I3-1988
mailto:rekhakumawat19@gmail.com

Kumawat Rekha; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2288

retransmission mechanism that both client and server

integrate. Its purpose is to avoid Denial of Service (DoS)

attacks that in UDP are very easy to be performed through the

exchange of a cookie by exchanging a cookie.

Fig. 1: DTLS Handshake

The final part of the handshake might seem similar to TLS but

since the transport is not reliable, the last message could be

lost. If, for example, the last flight is lost, the server believes

that the handshake has been completed. Since the client is

waiting for the server finished message, it will retransmit the

last flight completing the handshake. This situation does not

happen with TLS since there is no packet loss and needs to be

handled with a retransmission timer in DTLS. The DTLS

server might optionally send a HelloRequest to ask the client a

renegotiation in the same way as it happens with TLS.

3. DTLS API

The API used for DTLS is mostly the same as for TLS,

because of the mapping of generic functions to protocol-

specific ones. A new API will likely be added to set the

maximum application datagram size. If the size is not

specified explicitly, however, then the DTLS implementation

should adjust the size automatically. If a fragment is lost two

or three times, the implementation may reduce the size of the

maximum application datagram size until it is small enough.

Java API for Datagram Transport Layer Security (DTLS)

version 1.0 and 1.2 introduced in JEP 219 through the java.net

package.

Java.net

Java.net provides the classes for implementing networking

applications.

Java.net has two major classes:

1. DatagramSocket: This class represents a socket for

sending and receiving datagram packets.

Hierarchy:

 java.lang.Object

 java.net.DatagramSocket

Class Definition :

public class DatagramSocket extends Object

implements Closable

2. DatagramPacket: This class represents a datagram packet.

Datagram packets are used to implement a connectionless

packet delivery service.

Hierarchy:

 java.lang.Object

 java.net.DatagramPacket

public final class DatagramPacket

extends Object

4. IMPLEMENTATION
It creates client and server on the same host in the same JVM

and tries to exchange text messages between them via

DatagramSocket, and then validates that exchange is done

correctly. The implementation uses SSLEngine class to

translate application data (text message) to network

(encrypted) data and vice-versa. DatagramSocket class is used

to send and receive the network data. A client-server

handshake also should be done separately before app data

exchange.

.

There are three important constructs to use when adding

DTLS support to your application using OpenSSL: SSL_CTX,

SSL, and BIO. The SSL context (SSL_CTX) structure

contains all of the information used to execute a DTLS

handshake and create a session.

To go from zero to a configured and connected DTLS session,

you must:

1. Create and configure a DTLS SSL_CTX.

2. Create a BIO from the SSL_CTX to use for I/O (sending and

receiving packets).

3. Create an SSL instance from the DTLS BIO instance to start

the DTLS connection and then interact with a peer(s).

4.

4.1 Necessary changes of Java9, for DTLS support

SSLContext.getInstance ("DTLS"): A DTLS security provider

is available. This can be provided for older Java versions as

well.

 SSLEngineResult.HandshakeStatus.NEED_UNWRAP_AGAI

N available next

 to SSLEngineResult.HandshakeStatus.NEED_UNWRAP

 engine.getSSLParameters().setMaximumPacketSize(n) didn't

exist before.

4.2 DTLS Setup Code
The SSL context structure requires some credentials (a

certificate and private key) in order to work. Following

commands are used to setup DTLS connection:

openssl req -x509 -newkey rsa:2048 -days 3650 -nodes \

-keyout client-key.pem -out client-cert.pem

openssl req -x509 -newkey rsa:2048 -days 3650 -nodes \

-keyout server-key.pem -out server-cert.pem

This will create a client and server certificate and private key

file. We’ll use these to create the DTLS context. For

convenience, we’ll wrap up the DTLS relevant information

into a struct that stores the context, BIO, and SSL instance:

Typedef struct{

SSL_CTX *ctx;

SSL *ssl;

BIO *bio;

}DTLSParams;

../../../omak/Downloads/www.IJARIIT.com
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/9/docs/api/java/io/Closeable.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Object.html
http://download.java.net/java/jigsaw/docs/api/javax/net/ssl/SSLEngineResult.HandshakeStatus.html#NEED_UNWRAP_AGAIN
http://download.java.net/java/jigsaw/docs/api/javax/net/ssl/SSLEngineResult.HandshakeStatus.html#NEED_UNWRAP_AGAIN
http://download.java.net/java/jigsaw/docs/api/javax/net/ssl/SSLParameters.html#setMaximumPacketSize-int-

Kumawat Rekha; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2289

5. CONCLUSION
The Java 9 JDK provides new DTLS APIs and an

implementation of the DTLS protocols that includes

functionality for data encryption, message integrity, and server

and client authentication. The goal of this paper is to present

the implementation of the Datagram level security. Datagram

Transport layer security support in Java enables developer an

opportunity to insert datagram level security for applications

which uses UDP. DTLS Handshake is the first stage for

making the connection between peers. DatagramPacket and

DatagramSocket are two major classes provided by the

java.net package for implementing datagram level security.

Datagram Transport Layer security is implemented using

SSLEngine whose instance define protocol name and protocol

version. Support of DTLS makes Java faster than TLS

support.

6. REFERENCES
[1] Mastering Java 9 by Peter Verhas, Dr. Edward Lavieri.

[2] JEP 219: Datagram Transport Layer Security

http://openjdk.java.net/jeps/219.

[3] Java Platform, Standard Edition What’s New in Oracle

JDK 9.

[4] DTLS support in JDK 9 Martin Toshev Prague, 19- 20

October 2017.

[5] Java Secure Socket Extension (JSSE) Reference Guide -

Oracle Docs

[6] SSLEngine based DTLSConnector · Issue #421.

[7] Security enhancements in Java 9 - Distributed

Computing in Java 9, By Raja Malleswara Rao

Pattamsetti, June 2017

[8] Introduction to DTLS (Datagram Transport Layer

Security) Pixelstech.net.

[9] Java 9 - Oracle Help Center.

../../../omak/Downloads/www.IJARIIT.com
https://www.packtpub.com/mapt/book/application_development/9781787126992/10/ch10lvl1sec57/security-enhancements-in-java-9
https://www.pixelstech.net/article/1459585203-Introduction-to-DTLS%28Datagram-Transport-Layer-Security%29
https://docs.oracle.com/javase/9/whatsnew/toc.htm

