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ABSTRACT 
 

A novel improved signed digit 

representation procedure is proposed to overcome the 

two fundamental disadvantages of the current 

multiplier-free techniques: 1) circuit inconsistency 

and 2) computational redundancy. The fundamental 

difference between the existing multiplier free 

strategies and the proposed method could be a novel 

optimization framework based on vector 

decomposition. The constant vector is decomposed 

into two terms: a “private” matrix and a “public” 

vector which consist of the private operations of each 

individual entry and public operations shared by all 

of the entries, the overall data flow can be separated 

into two regular steps: first multiplied by the “public” 

vector  and then by the “private” matrix. The 

computational complexity lessening task is then 

accomplished by minimizing the number of 

operations within the “private” matrix and the length 

of the “public” vector. Experimental results 

illustrates that the proposed strategy outflanks the 

existing multiplier free strategies in less operations 

and more regular circuit structure. 

 

Keywords— Canonical-Signed-Digit (CSD), Multiplier-

free, Vector multiplication, Improved Signed Digit (ISD)   

1. INTRODUCTION 
Multiplication is a very important operation for digital 

computing systems, process controllers, and signal 

processors. The CSD[11] implementation of each entry 

by enumerating all possible circuit implementations to 

find the one with minimum adders, and propose a 

greedy strategy to reduce computational redundancy 

among different entries uses the group method and 

bounds several adjacent bits together in the 

representation step. However, this method is proposed 

for the reconfigurable FIR filters, thus the redundancy 

reduction performance is not satisfying. These 

techniques above suffer from a low dimensional search 

space problem. Since the representation of each entry 

is fixed before the redundancy reduction, the search 

space for the optimum implementation has to be 

restricted on the corresponding   representation results. 

 

By shifting the data bus the left, the multiplication of 

power-of-two can be accomplished proficiently and 

with the assistance of the binary complement code, the 

subtraction can be accomplished by adders. 

By including and subtracting arrangement of power-

of-two increase comes about, the steady increase in 

equipment are finished. There is a noteworthy 

computational excess in the CSD based 

methodologies. Since each section is changed over into 

movements and increases freely, a similar transitional 

operators must be propelled commonly. Numerous rich 

strategies have been proposed to diminish the 

computational excess of CSD [1]– [6]. 

  

Reference [1] and [2] propose a graph- synthesis –

based procedure to reuse the repetitive operation of 

each section. Dempster and Macleod make strides the 

CSD usage of each passage by identifying all of the 

conceivable circuit executions to discover the one with 

least adders [3] and propose a covetous procedure to 

diminish the computational repetition among 

distinctive sections [4].  

 

Reference [5] utilizes the group method and limits a 

few nearby bits together in the portrayal step. 

Nonetheless, this technique is proposed for the 

reconfigurable FIR filters, therefore, the redundancy 

reduction performance isn’t fuling. 

 

These previously mentioned strategies endure a low 

dimensional search space issues. Since the 

representation of each entry is settled before the 
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redundancy reduction, the search space for the ideal 

usage has got to be limited on the comparing 

representation comes about. Reference [6] proposes 

the Minimal Signed Digit (MSD).rather than a settled 

representation of each section, MSD records a few 

limited representation arrangements of each section 

and choose the ideal one by a joint optimization. In 

spite of a common and flexible framework, the 

increment of search space includes the combinatory 

blast issue in MSD.  

 

Reference [7] employments the greedy strategy to 

illuminate the optimization issues in MSD. Reference 

[8] extends the graph-synthesis-based method to the 

MSD framework. In spite of the fact that all of the 

existing procedures can diminish the computational 

redundancy essentially, the normality of the circuit 

may be yielded. For case, within the greedy-based 

strategies, any vertices of the data flow can be utilized 

as an intermediate result for the computation of other 

vertices. The variant add-path for distinctive entries 

influence the routability of the circuit and make the 

organized format fashion recalcitrant.  

 

In this brief, we propose a Improved Signed Digit 

(ISD) representation approach for the constant vector 

multiplication. The basic difference between the 

proposed strategy and the existing multiplier-free 

procedure is that the circuit consistency is considered 

jointly with the redundancy reduction process. We 

propose a novel optimization framework based on the 

vector decay. To be particular, within the framework, 

the constant vector is deteriorated into two terms: a 

“public” vector and a “private” matrix. In this way, the 

multiplication of the input signal and the consistent 

vector is accomplished by a successive multiplication 

of the “public” vector and “private” matrix. The 

“public” vector creates a set of normal intermediate 

vertices of the data flow which can be reused for each 

section. The in general computational excess can be 

diminished by minimizing the length of the “public” 

vector and the number of operations of the “private” 

matrix. At that point, we propose a greedy strategy to 

fathom solve the vector decomposition problem. 

 

2. MATHEMATICAL MODEL AND SOLVE 

METHOD FOR THE PROPOSED APPROACH 

The proposed vector decomposition procedure benefits 

from a modern representation methodology which 

employments 2𝑖 ± 1, i ∈ 𝑍,rather than power of 2, as 

the basic components to represent the entries of the 

constant vector.  

𝑛 = ∑ 𝑎𝑚 

∞

𝑚=0

× 2𝑝𝑚  × (2𝑞𝑚  ± 1 ), ∀𝑛 ∈ 𝑍,  

∃𝑝𝑚 ∈ 𝑍, 𝑞𝑚 ∈ 𝑍, 𝑎𝑚 ∈ {0,1}                  (1) 

  

Equation (1) can be proved as follows. 

Proof: As any integer can be represented in the binary 

form, we can get 

   𝑛 = ∑ 𝑎𝑚 
∞
𝑚=0 × 2𝑚 , ∀𝑛 ∈ 𝑍, ∃𝑎𝑚 ∈ {0,1}                                                               

(2) 

Based on (2), we can get 

     𝑛 = ∑ 𝑎𝑚 

∞

𝑚=0

× 2𝑚  × (21 − 1), ∀𝑛 ∈ 𝑍,              (3) 

 ∃𝑎𝑚 ∈ {0,1} 
 

     𝑛 = ∑ 𝑎𝑚 

∞

𝑚=0

× 2𝑚−1  × (20 + 1), ∀𝑛 ∈ 𝑍,        (4) 

 ∃𝑎𝑚 ∈ {0,1} 
 

If pm = m and qm = 1, (3)can be changed into 

𝑛 = ∑ 𝑎𝑚 

∞

𝑚=0

× 2𝑝𝑚  × (2𝑞𝑚 − 1) , ∀𝑛 ∈ 𝑍, 

                    ∃𝑎𝑚 ∈ {0,1},𝑝𝑚 = 𝑚, 𝑞𝑚 = 1.        (5) 

 

In this manner, any number can be represented by the 

summation of 2𝑖 − 1,i ∈Z and their shifts. 

 2𝑝𝑚  × (2𝑞𝑚 − 1), 𝑝𝑚 ∈ 𝑍, 𝑞𝑚 ∈ 𝑍 can be respected 

as asset of “basics”, which can represent all of the 

integers. 

 

  If 𝑝𝑚 = m-1 and 𝑞𝑚 = 0, (4) can be changed into 

𝑛 = ∑ 𝑎𝑚 

∞

𝑚=0

× 2𝑝𝑚  × (2𝑞𝑚 + 1) , ∀𝑛 ∈ 𝑍, 

    ∃𝑎𝑚 ∈ {0,1},𝑝𝑚 = 𝑚 − 1, 𝑞𝑚 = 0.           (6) 

With (5) and (6), Lemma (1) is demonstrated, which 

 illustrates that 2𝑖+1, i∈ Zcan represent any integer and 

it can be regarded as a more adaptable and 

over total “basis” to represent the integers. 

 

Considering that the shifters can be supplanted by 

filling the least noteworthy bits with 0, each 2𝑖 ±1, i∈ 

Z can be accomplished by one adder. We utilize 2𝑖 ±1, 

i∈ Z as a set of customary and open middle operations 

for all of the sections, and the shifts of 2𝑖 ±1, i∈ 

Z change as the private operations for 

each individual section.  

 

Scientifically, the assignment to speak to all of the 

passages by 2𝑖 ±1, i∈ Z and their shifts is to represent 

the constant vector by a multiplication of a “private” 

matrix (PM) and a “public” vector (PV) which 

comprise of the private and public sub operators, 

separately. 2𝑝𝑚  × (2𝑞𝑚  ± 1 ), 𝑝𝑚 ∈ 𝑍, 𝑞𝑚 ∈ 𝑍 can be 

respected as an over complete basis to represent the 

sections, which increment the solution space of the 

decomposition, and gives us adaptability to break 

down the vector in a more compelling way. 

 

a is defined as the constant vector, which is a column 

vector.  

x is the input. Therefore, we can get 

a × [x] = PM × PV × [x]             (7)             

The number of additions in the whole operation is 

decided by the length of PV and the number of 
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− 

≤ 

≤ 

≤ 

{} 

 
 

 

nonzero coefficients in PM.    If the length(PV) = M , 

size(PM) = M x N, and the number of nonzero 

coefficients in every line of PM is mn,  n ∈ Z, 1 ≤ n ≤ 

N . The number of additions within the whole 

operation can be gotten in 

         𝑛𝑢𝑚𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑀 + ∑ (𝑚𝑛 − 1)𝑁
𝑛=1              (8) 

 

We need to find the minimum of (8), in order to 

decrease the computational complexity in the 

implementation. The mathematical model of ISD 

representation approach is, 

{PM,PV} = arg min |𝑛𝑢𝑚𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠| = arg min M 

∑ (𝑚𝑛 − 1)𝑁
𝑛=1                                                            (9) 

 

Input: The constant multiplication vector a. 

Output: The selected PV and PM, which can 

decompose a. 

STEP 1: Initialization: 

Set V = [], sign_flag = 0, loop_flag = 1, n = 1, S = 

, temp_numadd=  inf, temp_PV=[],  temp_PM=[]; 

STEP 2: Get the least public suboperators: 

while (loop_flag == 1) do if (sign_flag == 0) do 

add the entry of 2n 1 into V 

sign_flag = 1  

else do 

add the entry of 2n +1 into V 

sign_flag = 0  

n = n +1  

end if 

for 0 < l length(a) do 

if al can be represented by the entries in V and their 

shifts do 

continue else do 

break end if 

end for 

if l == length(a) do 

loop_flag = 0  

end if end while 

STEP 3: Select the combination of PV and PM which 

uses the least additions: 

for 0 < m length(V) do 

choose m entries from V and add all of the possible 

situations into S 

end for 

for s in S do 

for 0 < l length(a) do 

if al can be represented by the entries in s and their 

shifts do 

continue else do 

break end if 

end for 

if l == length(a) do 

represent a by a multiplication of a matrix M and a 

vector V, and get the number of additions in the whole 

operation numadd according to (8), 

if temp_numadd > numadd do 

assign temp_PM as M, and temp_PV as V. 

end if end if end for 

PM = temp_PM, PV = temp_PV 

return PV and PM 

With the selected PV and PM, the implementation can 

be divided into two regular steps. The first step is to 

acquire the results of PV[x], and it can be achieved by 

an adder array easily, which is a regular architecture as 

shown in Fig. 1. 

 
Fig. 1: Architecture of adder array 

 

The second step is to achieve the final results by PM x 

(PV x [X]), and it can be finished by a 

few binary adder trees as appeared in Fig 2. In Figs.1 

and 2, able to discover that the greatest delay between 

each two registers is restricted to as it were one adder. 

The distribution of adders within the usage is balanced, 

which comes about in a customary circuit and moves 

forward the routability. Another advantage of the ISD 

representation approach is that, in the scenarios with 

low framework recurrence necessity, several stages 

can be consolidated into one organize, which decreases 

the hardware assets of registers. 

 
Fig. 2: Architecture of a binary adder tree3. 

 

3. PERFORMANCE EVALUATION OF THE 

PROPOSED APPROACH 

We use three experiments to evaluate the performance 

of the proposed ISD technique: a Gaussian filter, two 

reported filters, and random filters with variant orders. 

Experiment I: We choose a Gaussian filter with 11 

orders as an example to show the circuit design 

procedure with the proposed ISD technique. 

 

The filter coefficients are shown in: 

[14    19    57    108    134    108    57  19   41]  (10) 

 
Fig. 3: Gaussian filter implementation 
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Fig. 4: Multiplier block implementation in CSD 

form. 

 
Fig. 5: Multiplier block implementation with the 

ISD technique.  

 

In Fig. 3, this execution comprises of two parts: the 

multiplier piece and the register array. The multiplier 

block finishes the multiplication of each input and the 

filter coefficients. The register array gets the filtering 

results by including the multiplication comes about 

after different delays. It is appreciated that the most 

complex operation in this execution is to realize the 

multiplications of the inputs and six filter coefficients. 

In arrange to include the CSD form multiplier-free 

execution, the filter coefficients are represented as 

follows: 

 

[
 
 
 
 
 

1
4
19
57
108
134]

 
 
 
 
 

  =

[
 
 
 
 
 
 

20    0     0    0     0     0    0    0
0      0     0    0     0      0    0    0
20    20    0    0     20    0    0    0
20    0     0 − 20   0     0    20  0
0     0     20    20   0    20   20   0

  0    20    20    0     0     0     0     20

 ]
 
 
 
 
 
 

 x 

[
 
 
 
 
 
 
 
20

21

22

23

24

25

26

27]
 
 
 
 
 
 
 

 

(11)  

In fig 4, the implementation of multiplier block 

requires nine adders, and maximum delay between 

every two registers is one adder.With the proposed 

ISD approach discussed in Section II, we can get (12) 

and the implementation in Fig. 5 

 

[
 
 
 
 
 

1
4
19
57
108
134]

 
 
 
 
 

  =  

[
 
 
 
 
 
20 
22 
21 

     
0
0
0
      

0
0
 20

0 23 20

0 23 22

−21 0 23
 ]

 
 
 
 
 

 ×    [
20

22 + 20

24 + 20
]           (12) 

 

In Fig. 5, there are two stages in the multiplier block 

implementation. The first stage accomplishes the same sub 

operators, 2^0x, (2^0+2^2)x, and (2^0+2^4)x.  Within the 

second stage, the intermediate of stage 1 are shifted and 

added with several binary adder trees. The shift bits within 

the second stage are chosen by the coefficient of PM in (12). 

It is obvious that the maximum delay between two registers 

in this implementation is additionally one adder. However, 

the number of adders is diminished to 6. The detailed 

numbers of operations within the two sorts of 

implementations are recorded in table I. 

 

Table 1: Comparison of operations 

 

From Table I, we are able to discover that the proposed 

implementation uses less adders and registers than the 

usage in CSD form. It employment six adders to 

realize the multiplication of inputs and six filter 

coefficients, which is approximately 66% of the CSD 

form. 

 

Experiment II: The proposed ISD method is utilized in 

the implementations of the two filters which 

are received in [26]. The comparison of 

operations within the proposed ISD technique and the 

existing procedures is recorded in Table II.  

It can be watched that the computational excess among 

different channel coefficients is decreased by the 

proposed ISD procedure. Besides, among these 

existing procedures, the proposed ISD procedure needs 

the least adders.  

 

Table 2: Comparison of operations for two filters 

 

Experiment III: The exhibition of CSD and ISD are 

assessed on random filters with 116 bit quantization 

and variation order (from 116 to 255). The number of 

adders in CSD and ISD are checked, and their 

proportion is plotted in Fig.6. It can be observed that 

the ISD method saves around 35% adders of CSD, and 

the gain increases with the increment of filter orders.   

 

 

Implementation CSD 

form 

Proposed 

ISD 

Number of adders 9 6 

Number of Registers 17 10 

Maximum delay between every 

two registers 

One 

adder 

One 

adder 

Filter ALGORITHM Adders 

9 bits 

quantization 25 

orders 

[17] 23 

[27] 19 

[19] 21 

[26] 18 

Proposed ISD 12 

14 bits 

quantization 60 

order 

[11] 114 

[27] 61 

[19] 85 

[26] 75 

Proposed ISD 60 
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Fig. 6: Ratio of operations in ISD and CSD 

                                                                                              

4.  CONCLUSION 
In this brief, we have proposed an ISD representation 

approach for constant vector multiplication. Within the 

proposed ISD technique, the constant vector is 

deteriorated into two terms: a “private” matrix and a 

“public” vector. The “private” matrix contains the 

private sub operators for each section, the “public” 

vector contains the same sub operators for all of the 

entries. Based on the deterioration comes about, the 

“public” vector generates a set of regular intermediate 

vertices of the data flow which can be reused for each 

section. Hence, the circuit regularity can be considered 

jointly with the redundancy reduction handle within 

the proposed ISD strategy, which can improve the 

routability within the execution and make it more 

suitable of the circuit plan than the existing strategies. 

In addition, we have also proposed a greedy strategy to 

get the decomposition results in a least complexity 

way.         
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