
Bala Raj, Dhingra Sakshi; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2365

ISSN: 2454-132X

Impact factor: 4.295

(Volume 4, Issue 3)

Available online at: www.ijariit.com

A review on tree traversal techniques

Raj Bala

riyainsha8026@gmail.com

Chaudhary Devi Lal University, Sirsa, Haryana

Sakshi Dhingra

sakshi24.dhingra@gmail.com

Chaudhary Devi Lal University, Sirsa, Haryana

ABSTRACT

A tree is a non-linear data structure for fast storing and

retrieval of data in primary memory. It represents data in the

form of hierarchical form. Data are stored in a tree i.e.

called as a node, in which topmost node is called root and

each node has one or more nodes lying on the left or right

side of a tree. Except for root node each node has a parent

node. The information can be extracted from a tree through

various traversal algorithms. Tree traversal means visiting

the nodes of a tree at once. In this paper, we are studying

different algorithms for tree traversal

Keywords— Tree, Node, Traversal, Path

1. INTRODUCTION
A tree is one of the most important parts of computer sciences.

A tree is a non-linear data structure (such as graphs and trees),

in which data is represented in a hierarchal manner. Every

element in a tree is called node. It is a collection of different

nodes. When we want to represent a hierarchical relationship

represented between family members, employees in company

etc., the trees are very flexible, powerful and versatile data

structure. In a tree, data is organized in random order [2]. The

data of particular elements are stored in a node of the tree and

linked to next element in the tree structure. The topmost

element in a tree is called root. In a tree, except for the root

node, each element has a parent node. Each parent node has

zero or more children. It is called a left child or a right child.

A tree has different types of terminology [8]:

Node: Each data items are represented in a tree through node.

Root node: In a tree, the root node is topmost node.

Internal/Non- Terminal Node: A node that is not a root

node but has at least one child that is called non-terminal

node.

External/Terminal or Leaf Node: External nodes are those

nodes that have no children.

A degree of a node: Degree of a node tells indicates the

number of subtrees in a given tree.

Siblings: The Descendants nodes of a given ancestors node

are called siblings.

Level: A level number is assigned each to a node in a tree.

The root node is always at level zero. After root node children

are at level 1 and their immediate children at level 2 and it

goes on up the at last node of a tree.

Path: It is a sequence of consecutive edges from the source

node to destination node.

Depth/Height: How many levels or maximum level of a tree

i.e. called depth or height of a tree.

Branch: Ending of a leaf node in a tree is called the branch.

When we are performing an operation on a tree for retrieval of

an information, we are visiting or walk the tree i.e. called tree

traversal. Different types of algorithms are used for traversal

of a tree. Preorder Traversal, in Order Traversal, Post order

traversal or Level Order Traversal. DFS or BFS algorithm is

also used for a tree traversal. Both are used as a different

process to traverse a tree.

Application of Non-Linear Data Structure: Tree

There are many applications of non-linear data structure tree,

i.e. medical data, policy proposal, a non-medical data,

underwriter data sources, 3D video games, file storage, space

partition, specialization of image signature [6]. Also, have the

property of image filtering. Min Tree and Max Tree terms are

used for image filtering [13].

2. LITERATURE REVIEW
Suri Pushpa, Prasad Vinod [1] This paper has proposed

some algorithm for balancing the height of the binary tree. The

author gives the idea as to how we can maintain the shape of a

binary tree in a proper way. And how to manage the time and

space requirements can be managed. In this paper author

proposed some tree balancing algorithm. These algorithms can

be static (global) or dynamic in nature. Both algorithms have

pros and cons. Adel's son-Velskii & Landis proposed AVL

Tree (dynamic algorithm) for balancing the binary tree. Some

examples of this come close to are the weight-balance tree,

height-balanced tree, and B-trees. In the static algorithm,

rebalancing is performed when the need arises. Most

algorithms are static in nature. The static algorithm is better

performing when tree size is small. The author has given the

idea that how we can manage the balance of tree after

insertion or deletion of a node. The main purpose of this paper

is to show the height of a tree in O(log(n)), so that all the basic

operation or tree perform in O(log(n)) time. Runtime

complexity is O(N) of each node in a tree. Over the years

../../../omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V4I3-2015
mailto:riyainsha8026@gmail.com
mailto:sakshi24.dhingra@gmail.com

Bala Raj, Dhingra Sakshi; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2366

computer scientists have proposed different balancing

algorithm. After the study of different types of balancing

algorithms, algorithms are not given an idea that balances the

tree in lesser time. So there are more opportunities for the

researcher in future.

Hua Li [5], the author has discussed binary tree & its

properties which is a very vital data structure in computer

science. In this paper author discussed recursive & non-

recursive algorithm in detail. The author wants some

improvement in existing programming. The comparison made

between recursive and non-recursive algorithm. A recursive

algorithm is very easy and trouble-free. Through the recursive

call, we made binary tree traversal very speedily. In the

recursive algorithm, all traversal depend upon the pointer,

when a pointer is lost the traversal process is stopped. It is

calling itself in a program so that efficiency of the program is

low. When the efficiency of the recursive program is low, then

the author follows non-recursive traversal algorithm. A non-

recursive algorithm is totally different from it. A non-recursive

algorithm is very difficult binary tree traversal algorithm. It is

used to stack to store the data from tree node. When the

operations are performed on the tree, the outputs come one

after other. In the paper, the author intends to propose the

improvement in the non-recursive algorithm for better

program efficiency and removes the complexity of the non-

recursive algorithm.

Dr. N. Rama, Justin Sophia. I [12], the author proposed DFS

& BFS searching algorithm. Data structure plays an important

role in a mathematical formulation for creating good software.

The author proposed DFS algorithm for full binary tree

traversal (FBT) through preorder. In this, the author paper tries

to find the time taken by DFS & BFS algorithm for traverse

the height of a full binary tree.

In DFS traversal, the tree is traversed depth wise. When

traversal process starts from the root node and traverses it, at

last, to the leaf node. It is implemented using a stack. In which

backtracking is performed on DFS algorithm. It is generally

gets trapped into infinite loops. In a BFS traversal tree is

visited as a level wise. A queue is used for implementation of

BFS tree. In a BFS traversal backtracking is not required like

as DFS. It is never gets trapped into infinite loops. The main

purpose of the author in this paper is to calculate the time

taken to search a destination node by DFS by preorder

traversal algorithm.

Mr. Chandrashekahr S. Khese, Prof. Amrit Priyadarshi

[6], Arrays, vectors and liked lists data structure is a linear

data structure in which data are stored in sequence but in tree

data structure data is stored in hierarchical form. It means one

node has further one or more node. In tree data structure data

are stored at random from. The shape of a tree depends on the

form of data. When data is not in the form of random, the

height of the tree becomes longer on one side, and the shape of

the tree becomes wider and flatter. In this paper discussed

worst-case analysis in BST tree (binary search tree). The aim

of this paper is to show how we can maintain the height of the

tree and how we can perform an operation on a tree in

O(log(n)) time.

Kevin Andrusky, Stephen Vurial and Jose Nelson Amaral

[3], In the paper, an attempting made to present a profiling-

based analysis to decide the traversal direction of link-based

tree data structures. The paper underlines the fact that the way

of traversal of the tree is predefined. It means the nature of

algorithm that is used in a tree to perform an operation on a

tree that can be breadth first or depth first. The storage

capacity of the profiling based analysis is efficient. When it

used, the non instrumented code 7 percent extra memory is

required. When the profiling based analysis of the tree is

performed the result comes out in the form of float point. So

that how we can consider the nearest vale of BFS or DFS.

Those values are used by the programmer or researcher for

improvement in the data structure. The author proposes to

traversal of the tree not required the modification on the part

of the programmer but small modification to a compiler.

V. R. Kanagavalli1, G. Maheeja [11], this paper promoted

the idea for the retrieval of the information from tree data

structure. In this paper, the author well defines IR

(Information Retrieval) or IE (Information Extraction). Both

techniques IE and IR have a different goal. IE does not set any

goal but IR set a well defined a goal to satisfy the users need

regarding retrieval information or data from a non-linear data

structure. The man purpose of information retrieval is to

answer the user’s queries.

In this paper, different data structures are used for information

retrieval i.e. storage data structures in information retrieval,

process-oriented data structures in information retrieval,

descriptive data structures in information retrieval.

Niloofar Aghaieabiane, Henk Koppelaar, and Peyman

Nasehpour [10], the paper proposed an algorithm for

reconstructing a binary tree. Most of the algorithms have been

proposed for a binary tree from its inorder and preorder

traversals. In this paper proposed an Inpos algorithm for

reconstructing the binary tree from its inorder and postorder

traversal i.e. takes the time O(n2) for running an algorithm. In

this paper proposed an improved inpos algorithm i.e. takes

time and space complexity is θn. The inpos algorithm also has

been a feature that also provides the information about how

many sub-nodes of a parent node that can be one, two or more.

The inpos algorithm provides a matrix based structure. So we

can access the information from a given tree in linear time.

Parth Patel and Deepak Garg [4], the author discussed

different types of advance tree data structure. B-tree and R-

tree both are the basic index structure. In this paper, the author

made a comparison between B-tree and T-tree and its

applications. Some factors were presented in data structure i.e.

complexity, query type support, data type support, and

application, on the basis of those factors comparison is made

in the advance tree data structure. Proposed modified B-tree

and R-tree are used in real word for the query and

performance optimization. Those proposed trees; some have

less time and space complexity. B-tree and R-tree support the

single query and multidimensional query in that order. The

author proposed a new index structure with improvement in

existing data structure like a hash function. It is used by BR

tree. A new index structure is proposed by using the existing

two different index structure that made a change in algorithm

same as hash index structure.

Jeffrey L. Eppinger[9], In this study, the author has given an

idea, how we can perform an operation on tree i.e. insertion or

deletion randomly. That operation performed on a binary tree

by symmetric or asymmetric methods. That operation in this

paper the author proposed a comparison between insertion and

asymmetric deletion algorithm i.e. used for the expected

internal path of a binary tree. The main aim of the author in

this paper is how we can improve in insertion and asymmetric

deletion algorithm that can provide a binary tree with

decreased internal path length after performing operations.

Because when we make an operation (insertion or asymmetric

deletion) on a random binary tree, the length of the internal

../../../omak/Downloads/www.IJARIIT.com

Bala Raj, Dhingra Sakshi; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2367

path more increased that cause-effect on balance of a random

binary tree. However, the author proposed a symmetric

algorithm for the solution of above-discussed problems.

Asymmetric deletion algorithm made a balance in which

randomly binary tree when insertion or deletion operation is

performed.

Navneet Kaur, Deepak Garg [7], had given an idea of how

we can reduce the unnecessary research node of a tree.

"Analysis of the Depth First Search Algorithms". In this paper,

the author focuses on how we can improve the search in a

non-linear data structure (tree). In which is used for the RHS

algorithm and parallel formulation for improvement in search,

better time and space management for memory.DFS algorithm

has a backtracking record i.e. main drawback of this

algorithm. That drawback is removed by using the RHS

algorithm [13]. Which is not required for the backtracking on

a node. Using RHS algorithm or parallel formulation we can

improve the searching time and given the better results.

Backtracking is mostly responsible for the worse performance

of DFS.

Table 1: A brief overview of this literature review

No. Types of Algorithms Time complexity Space complexity Data

Structure

1. BFS O(|n|): where n is the

number of nodes

O(|n|) Queue

2. DFS O(|n|) Depends on implementation Stack

3. DFS(recursive implementation) O(|n|) O(|h|): h is the maximal depth

of tree

4. DFS(with iterative solution) O(|n|) O(|n|) Stack

5. Recursive algorithm (Fibonacci

sequence)

O(2^n) O(nm): n is the maximum

depth of recursion tree

6. Component tree computation

algorithm (memory access with

minimum degree b)

O(b+logbv)(as per memory

access)

O(b+logbv) Stack

7. RHS algorithm for improvement in

DFS algorithm[7]

O(N) O(N) Stack

8. RHS (in case of complete Binary

tree)[7]

O(2n-1) - Stack

9. Iterative deepening depth-first

search (IDDFS) algorithm(for well-

balanced tree)

O(bd): where b is the

branching factor and d is the

shallowest solution

O(d) Stack

10. Martin & Ness’s Balancing

Algorithm

O(N) The stack is used to carrying

out the traversal

Stack

11. A Colin day O(N) Little space is required Contiguous

memory

12. Change & Ayengar O(N) Additional workspace required

= size of tree

Not used

Stack

13. Stout & Warren O(N) Only fixed amount of space is

required

-

14. In order traversal without recursion O(N) - Stack

15. Inorder traversal using recursion &

iterative algorithm

O(n) O(n) Stack

16. Preorder traversal (iterative and

non-recursive)

O(n) O(n) Stack

17. New modified non-recursive

algorithm[14]

O(N) O(NlogN) -

18. Max-tree algorithms.[13] Shows in table No. 2(n is the number of pixels and k the number of gray

levels)

Table 2: Max Tree Algorithm

../../../omak/Downloads/www.IJARIIT.com

Bala Raj, Dhingra Sakshi; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2368

3. CONCLUSION
In this review paper discussed various non-linear data

structure tree, and also discussed different kinds of tree

traversing techniques. In existing tree traversing algorithms

an issue Occurs about time complexity, space complexity

and height balance of a tree. The author changed the existing

algorithm day by day for better performance, according to a

need of time in the data structure. The algorithm that can

balance a tree in less time since has not been developed. In

future, best scope in the improvement in existing methods.

4. REFERENCES
[1] Suri Pushpa, Prasad Vinod, Binary Search Tree Balancing

Methods: A critical Study International Journal of

Computer Science and Network Security, Volume.7 No.8,

August 2007

[2] Rubi Dhankhar, Sapna Kamra, Vishal Jangra, Tree

Concept in the data structure, International Journal of

Computer Applications, Volum.1, 2014

[3] Kevin Andrusky, Stephen Curial, and Jose Nelson

Amaral. Tree Traversal Orientation Analysis

[4] Parth Patel and Deepak Garg, Comparison of Advance

Tree Data Structures, International Journal of Computer

Applications, Volume No. 2, March 2012

[5] Hua Li, Binary Tree’s Recursion Traversal Algorithm and

Its Improvements, May 2016.

[6] Mr. Chandrashekhar S. Khese, Prof. Amirit, Binary

Search Tree and Its Applications: Survey, International

Journal on Recent innovation Trends in Computing and

Communication, Volume 3, November 2015

[7] Navneet Kaur, Deepak Garg, Analysis of The Depth First

Search Algorithms

[8] Ramesh M. Patelia, Shilpan D. Vyas, Basic Tree

Terminology, Their Representation and Application 2015.

[9] Jeffrey L. Eppinger, An Empirical Study Of Insertion And

Selection In Binary Search Trees, Volume No. 26,

September 1983

[10] Niloofar Aghaieabiane, Henk Koppelaar, and Peyman

Nasehpour, An improved algorithm to reconstruct a

binary tree from it's in order and postorder traversals,

April 4, 2018.

[11] V. R. Kanagavalli1, G. Maheeja, A Study on the Usage of

Data Structures In Information Retrieval

[12] Dr. N. Rama, Justin Sophia. I, An Inquisitive Result in

DFS Problem of Binary Trees, International Journal of

Scientific Research and Management, Volume.5, July

2017.

[13] Edwin Clarinet and Thierry Geraud, A Comparative

Review of Component Tree Computation Algorithms,

Volume. 23, No.9, September 2014

[14] Nitin Arora, Pradeep Kumar Kaushik, satendra Kumar,

Iterative Method for Recreating a Binary Tree form its

Traversals, International Journal of Computer

Applications, Volume. 57 No.-11, November 2012.

../../../omak/Downloads/www.IJARIIT.com

