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ABSTRACT 
 

Identification of handwritten digits is one of the major areas 

of research in the field of character recognition. Artificial 

Neural Networks helps in computer vision that deals with 

how a computer could achieve high-level of understanding 

from digital images or videos. Thus, neural networks prove 

to be a boon in recognizing handwritten digits that are 

scanned as images. However, this paper aims at studying the 

working of specifically three neural networks - Multi-

Layered Perceptron (MLP), Radial Basis Function (RBF) 

and Convolutional Neural Network (CNN). In order to focus 

majorly on the implementation of these three neural 

networks rather than the complexity of the dataset being 

used, we have used MNIST (Modified National Institute of 

Standard and Technology) dataset from keras library. The 

MNIST dataset contains 70,000 black and white images of 

handwritten English digits (60,000 training images and 

10,000 testing images). In our study of the above three 

mentioned neural networks, we have used relu as activation 

function in the hidden layers and softmax as activation 

function in the final layer of neural network, Adam as an 

optimizer and cross-entropy as loss function. We have 

observed that all three networks give accuracy above 95%, 

however, the major difference is in its training time and 

error rate. 
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1. INTRODUCTION 

Identification of handwritten digits is one of the major areas of 

research in the field of character recognition and pattern 

recognition. Artificial Neural Networks (ANN) helps in 

computer vision or machine vision - a field that deals with how 

a computer could achieve high-level of understanding from 

digital images or videos. Thus, ANN proves to be a boon in 

recognizing handwritten digits that are scanned as images. 

ANN is basically a rough model of human brain structure that 

mimics the functioning of the human brain in order to do 

specific things such as classifying objects, etc. ANN is made up 

of multiple layers and each layer is made up of one or more 

nodes called a neuron. A basic neural network structure can be 

broken down into three sections. The first section consists of a 

layer commonly known as input layer. The input layer takes the 

input from the dataset, processes it and passes the generated 

output to the next section. The second section consists of at 

least one layer commonly known as a hidden layer. The hidden 

layer accepts the output generated by the input layer and 

applies an activation function over each input neurons in order 

to recognize the pattern of the input. The final section consists 

of the output layer. In our case, the output layer contains 10 

neurons and if fired gives any of the output between 0 - 9.  

 

2. METHODOLOGY 
A. MNIST Dataset 

The MNIST (Modified National Institute of Standard and 

Technology) is one of the first datasets that proves the 

effectiveness of neural networks. Classifying MNIST dataset is 

considered as ‘hello world’ program of Machine Learning 

(ML) and is widely used for classification and image 

recognition task. The MNIST dataset is also often used to 

compare algorithm performances in research and hence, we 

have chosen this classic dataset primarily to focus more on the 

working and understanding of neural networks topologies 

rather than the complexity of the dataset being used.  An 

MNIST dataset of handwritten digits contains a training set of 

60,000 examples and a test set of 10, 000 examples. It is a 

subset of a larger set obtainable from NIST. The training set is 

used to teach the algorithm to predict the correct label, i. e., the 

integer 0 to 9, while the test set is used to check how accurate 

the trained network can make guesses. In ML, this is called 

supervised learning as we have the correct answers of the 

images we are making guesses about. The training set acts as a 

supervisor that corrects the neural network when it guesses 

wrong. Each MNIST image is 28 x 28 pixels, which means our 

input data is 28 rows x 28 columns matrix and moreover, 

MNIST contains 10 possible outputs, i.e., labels numbered as 0 

to 9. 

 

B. Keras Library 

Keras is an open source Deep Learning (DL) library developed 

in python [1]. We have used keras mainly for three reasons – 
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First, keras is a wrapper that allows the use of either Theano or 

TensorFlow backend. Theano is a low-level library that focuses 

inefficient computation whereas TensorFlow is another low-

level library that is less mature than Theono, though, supported 

by Google and offers out-of-the-box distributed computing. 

That means, using keras we can easily switch between the two, 

depending on our needs. Second, keras’s guiding principles 

such as modularity, minimalism, extensibility, and python-

nativeness makes working in keras simple and enjoyable. And 

finally, keras has out-of-the-box implementations of common 

neural network structures. Thus, keras is the ideal library for 

our research. 

 

C. Activation function: ReLu and Softmax 

A neuron in the artificial neural network calculates the 

weighted sum of its input, add a bias and then decide whether it 

should be ‘fired’ (activated) or not. The activation function 

helps to take this decision. There are various activation 

functions such as step function, sigmoid, tanH, ReLU, etc. 

Recent DL neural networks use Rectified Linear Unit (ReLU) 

activation function for the hidden layers. In fact, in the study of 

various activation functions (such as, sigmoid, tanH, eLu, 

ReLU, softSign, and softPlus), 98.43% classification accuracy 

is obtained with the ReLU activation function [4] which is the 

highest percentage of accuracy as compared to others. ReLU 

function gives an output x if x is positive and 0 otherwise. The 

main advantage of ReLU function over other activation 

functions is that it does not activate all the neurons at the same 

time unnecessarily, i. e., if the input to the neuron is negative it 

will convert it to zero and then the neuron does not get 

activated.  
 

The output classes (0-9) of our problem are mutually exclusive 

and therefore we have used softmax classifier in the final layer 

of our neural networks. The softmax function compresses the 

output of each unit to be between 0 and 1, just like a sigmoid 

function. But unlike sigmoid, it also divides each output such 

that the sum total of the output is always equal to 1. The output 

of the softmax function is equal to a categorical probability 

distribution, i. e. it tells the probability if any of the classes are 

true. Mathematically, the softmax function is shown below, 

where z is a vector of inputs to the output layer (in our case, 

there are 10 elements in z as we have 10 output classes) and j 

indexes the output classes, so j = 1, 2, 3K (in our case, K = 10). 

 

D. Optimization function: Adam 

The choice of optimization function in neural network model 

can mean the difference between good results (accuracy) within 

minutes, hours and days. Gradient descent is so far the most 

commonly used optimization procedure to optimize neural 

networks. Gradient descent is used to find the values of 

parameters of a function that minimizes a cost/loss function. 

Adam (Adaptive Moment Estimation) is one of the gradient 

descent algorithms that are an extension to Stochastic Gradient 

Descent (SGD). SGD upholds a single learning rate for all 

weight updates and the learning rate does not change during 

training whereas Adam computes individual adaptive learning 

rates for different parameters from estimates of first and second 

moments of the gradients. The bias-correction in Adam helps it 

to outperform other gradient descent algorithms such as 

RMSProp, Adadelta, Adagrad, etc. and therefore, Adam might 

be the best overall choice [2] as it achieves good results fast.  

 

E. Loss function: Cross-Entropy 

Most learning neural networks calculate error as the difference 

between the actual output and the predicted output. The 

function that is used to calculate this error is known as Loss or 

Error or Cost function. There are various loss functions that 

give different errors for the same prediction and thus have a 

significant effect on the performance of the model. Loss 

functions can be categorized into three major categories: 
 

1. Regressive loss functions: These functions are used in a 

regressive problem that is when the target variable is 

continuous. Most commonly used regressive loss function is 

Mean Square Error 

2. Embedding loss function: These functions are used to 

measure whether two inputs are similar or dissimilar. 

Examples of this category are Hinge Error and Cosine Error 

3. Classification loss functions: These functions are used in 

classification problem that is when the target variable is a 

probability value f(x) called the score for the input x. Since 

our research case problem of recognizing handwritten digits 

is a classification problem, we have used cross-entropy 

which is a classification loss function. There are two types 

of cross-entropy functions such as binary cross-entropy that 

is used to classify inputs into either of two classes (0 or 1) 

and categorical cross-entropy that is used to classify inputs 

into more than two classes. In our case, we have 10 classes 

or labels (0 to 9) and so we have used categorical cross-

entropy as loss function for our neural networks. 

 

3. IMPLEMENTATION 
We have followed the basic framework of the artificial neural 

network while implementing the three algorithms – Multi-

layered Perceptron (MLP), Radial Basis Function (RBF) and 

Convolutional Neural Network (CNN) – in order to analyze 

their functioning and performance in recognizing handwritten 

digits using MNIST dataset. The basic framework followed for 

our research is as follows: 
 

1. Load MNIST dataset from keras library. 

2. The MNIST dataset contains images of 28 x 28 pixels (2-

dimensional array), flattened the images into a vector of 

784-pixel numbers. 

3. Normalize the pixel values ranging between 0 and 255 to 

fit into the scale of 0 and 1. 

4. A number of nodes in the input layer is 784 and that in the 

output layer is 10 (for labels 0 to 9). 

5. Assign random weights to all linkages (links from one 

neuron of one layer to the neuron in another layer) to start 

the algorithm. 

6. Find the activation rates of hidden nodes by ReLU 

activation function using the inputs in the input layer and 

the linkages (input nodes --> hidden nodes). 

7. Find the error rate at the output node by categorical cross-

entropy loss function and recalibrate all the linkages 

between hidden nodes and output nodes. 

8. Cascade down the error to hidden nodes using the weights 

and error found at output nodes by Adam optimizer. 

9. Recalibrate the weights between the hidden node and the 

input nodes. 

10. Repeat the process until the convergence criterion is met 

11. Score the activation rate of the output nodes using the final 

linkage weights. 

 

MLP, RBF and CNN - all three follow the above basic 

framework that we have defined for our research, however, 

RBF and CNN also provide an extension of this framework. 

The detailed functioning of these three neural networks 

algorithms are given below: 

F. Multi-layered Perceptron (MLP) 

MLP strictly follows the basic framework defined above. MLP 

has at least one hidden layer and is referred to as "vanilla" 

neural network specifically when it has only one hidden layer. 
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G. Radial Basis Function (RBF) 

RBF neural network is structurally same as MLP. While both 

MLP and RBF could solve non-linear classification problems, 

RBF neural networks transform the input signal into another 

form which can then be fed into the network, unlike MLP. RBF 

neural networks are strictly limited to have just one hidden 

layer. This hidden layer is called feature vector. RBF neural 

networks increase the dimension of the feature vector; this, in 

turn, increases the linear separability of the feature vector. 

Gaussian activation functions are generally used for RBF 

networks. Only the hidden layer nodes perform the radian basis 

transformation (Gaussian activation) function and output layer 

performs the linear combination of the generated outputs in the 

hidden layer in order to give a final probabilistic value. Thus, in 

RBF networks, the classification is done only at hidden layer to 

output layer. 

 

H. Convolutional Neural Networks (CNN) 

CNN is an extension to MLP. The first hidden layer is the 

convolutional layer. The convolutional layer has feature maps 

each with the size of 5 x 5 matrix and a rectifier activation 

function. The output of the convolutional layer is smaller than 

the original image. The next layer is the pooling layer that 

takes the maximum or average (in our case, max) of the output 

from the first hidden layer and is configured with a pool size 

of 2 x 2. The next layer is the activation layer that converts the 

2D matrix to a vector and is passed to be processed by fully 

connected layers (standard MLP).  

 

4. RESULTS 
In our study of the above three mentioned neural networks, we 

have used relu as activation function in the hidden layer of 

MLP, CNN and Gaussian as activation function for RBF, 

softmax as activation function in the final layer of neural 

network, adam as an optimizer, cross-entropy as loss function, 

batch size (total number of training examples present in a 

single batch) of 64 and 1 hidden layer. Following are the output 

screenshots of our implementation of the three mentioned 

neural networks: 

 

I. Multi-layered Perceptron (MLP) 

 
 

In MLP, the error rate is 1.74% and test accuracy is 97.92% 

after 10 epochs (one epoch is when an entire dataset is passed 

forward and backward through the neural network only once). 

The time is taken by each epoch to complete increases by few 

seconds as the number of epochs increases.  With the increase 

in the number of epochs, the current loss (loss) of the training 

set decreases and the accuracy (acc) of the training set increases 

gradually. Same goes for the validation set loss and accuracy 

(val_loss and val_acc). 

 

J. Radial Basis Function (RBF) 

 
 

In RBF, the error rate is 1.45% and test accuracy is 98.55% 

after 10 epochs. The time taken by each epoch to complete is 

much less than that in MLP. With the increase in the number of 

epochs, the current loss (loss) of the training set decreases and 

the accuracy (acc) of the training set increases gradually. Same 

goes for the validation set loss and accuracy (val_loss and 

val_acc). However, the losses are more in the initial epochs as 

compared to MLP 

 

K. Convolutional Neural Networks (CNN) 

 
 

5. CONCLUSIONS 
RBF trains model faster as compared to MLP and CNN while 

CNN takes a longer time to train than the other two. MLP 

CNN gives the highest accuracy of 99%. However, if the 

dataset is not complex such as MNIST, it is better to use MLP 

or RBF or combination of both instead of CNN as CNN takes 

longer to train. Therefore, the selection of a neural network for 

classification problem highly depends upon the dataset used. 
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