
Dasgaonkar Karishma, Chopade Swati; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2429

ISSN: 2454-132X

Impact factor: 4.295
(Volume 4, Issue 3)

Available online at: www.ijariit.com

Analysis of multi-layered perceptron, radial basis function and

convolutional neural networks in recognizing handwritten digits
Karishma Dasgaonkar

karishmadasgaonkar@gmail.com

Veermata Jijabai Technological Institute, Mumbai,

Maharashtra

Swati Chopade

schopade@vjti.org.in

Veermata Jijabai Technological Institute, Mumbai,

Maharashtra

ABSTRACT

Identification of handwritten digits is one of the major areas

of research in the field of character recognition. Artificial

Neural Networks helps in computer vision that deals with

how a computer could achieve high-level of understanding

from digital images or videos. Thus, neural networks prove

to be a boon in recognizing handwritten digits that are

scanned as images. However, this paper aims at studying the

working of specifically three neural networks - Multi-

Layered Perceptron (MLP), Radial Basis Function (RBF)

and Convolutional Neural Network (CNN). In order to focus

majorly on the implementation of these three neural

networks rather than the complexity of the dataset being

used, we have used MNIST (Modified National Institute of

Standard and Technology) dataset from keras library. The

MNIST dataset contains 70,000 black and white images of

handwritten English digits (60,000 training images and

10,000 testing images). In our study of the above three

mentioned neural networks, we have used relu as activation

function in the hidden layers and softmax as activation

function in the final layer of neural network, Adam as an

optimizer and cross-entropy as loss function. We have

observed that all three networks give accuracy above 95%,

however, the major difference is in its training time and

error rate.

Keywords— Neural networks, Multi-Layered perceptron,

MLP, Radial basis function, RBF, Convolutional neural

network, CNN, MNIST, ANN

1. INTRODUCTION

Identification of handwritten digits is one of the major areas of

research in the field of character recognition and pattern

recognition. Artificial Neural Networks (ANN) helps in

computer vision or machine vision - a field that deals with how

a computer could achieve high-level of understanding from

digital images or videos. Thus, ANN proves to be a boon in

recognizing handwritten digits that are scanned as images.

ANN is basically a rough model of human brain structure that

mimics the functioning of the human brain in order to do

specific things such as classifying objects, etc. ANN is made up

of multiple layers and each layer is made up of one or more

nodes called a neuron. A basic neural network structure can be

broken down into three sections. The first section consists of a

layer commonly known as input layer. The input layer takes the

input from the dataset, processes it and passes the generated

output to the next section. The second section consists of at

least one layer commonly known as a hidden layer. The hidden

layer accepts the output generated by the input layer and

applies an activation function over each input neurons in order

to recognize the pattern of the input. The final section consists

of the output layer. In our case, the output layer contains 10

neurons and if fired gives any of the output between 0 - 9.

2. METHODOLOGY
A. MNIST Dataset

The MNIST (Modified National Institute of Standard and

Technology) is one of the first datasets that proves the

effectiveness of neural networks. Classifying MNIST dataset is

considered as ‘hello world’ program of Machine Learning

(ML) and is widely used for classification and image

recognition task. The MNIST dataset is also often used to

compare algorithm performances in research and hence, we

have chosen this classic dataset primarily to focus more on the

working and understanding of neural networks topologies

rather than the complexity of the dataset being used. An

MNIST dataset of handwritten digits contains a training set of

60,000 examples and a test set of 10, 000 examples. It is a

subset of a larger set obtainable from NIST. The training set is

used to teach the algorithm to predict the correct label, i. e., the

integer 0 to 9, while the test set is used to check how accurate

the trained network can make guesses. In ML, this is called

supervised learning as we have the correct answers of the

images we are making guesses about. The training set acts as a

supervisor that corrects the neural network when it guesses

wrong. Each MNIST image is 28 x 28 pixels, which means our

input data is 28 rows x 28 columns matrix and moreover,

MNIST contains 10 possible outputs, i.e., labels numbered as 0

to 9.

B. Keras Library

Keras is an open source Deep Learning (DL) library developed

in python [1]. We have used keras mainly for three reasons –

../../../omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V4I3-2038
mailto:karishmadasgaonkar@gmail.com
mailto:schopade@vjti.org.in

Dasgaonkar Karishma, Chopade Swati; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2430

First, keras is a wrapper that allows the use of either Theano or

TensorFlow backend. Theano is a low-level library that focuses

inefficient computation whereas TensorFlow is another low-

level library that is less mature than Theono, though, supported

by Google and offers out-of-the-box distributed computing.

That means, using keras we can easily switch between the two,

depending on our needs. Second, keras’s guiding principles

such as modularity, minimalism, extensibility, and python-

nativeness makes working in keras simple and enjoyable. And

finally, keras has out-of-the-box implementations of common

neural network structures. Thus, keras is the ideal library for

our research.

C. Activation function: ReLu and Softmax

A neuron in the artificial neural network calculates the

weighted sum of its input, add a bias and then decide whether it

should be ‘fired’ (activated) or not. The activation function

helps to take this decision. There are various activation

functions such as step function, sigmoid, tanH, ReLU, etc.

Recent DL neural networks use Rectified Linear Unit (ReLU)

activation function for the hidden layers. In fact, in the study of

various activation functions (such as, sigmoid, tanH, eLu,

ReLU, softSign, and softPlus), 98.43% classification accuracy

is obtained with the ReLU activation function [4] which is the

highest percentage of accuracy as compared to others. ReLU

function gives an output x if x is positive and 0 otherwise. The

main advantage of ReLU function over other activation

functions is that it does not activate all the neurons at the same

time unnecessarily, i. e., if the input to the neuron is negative it

will convert it to zero and then the neuron does not get

activated.

The output classes (0-9) of our problem are mutually exclusive

and therefore we have used softmax classifier in the final layer

of our neural networks. The softmax function compresses the

output of each unit to be between 0 and 1, just like a sigmoid

function. But unlike sigmoid, it also divides each output such

that the sum total of the output is always equal to 1. The output

of the softmax function is equal to a categorical probability

distribution, i. e. it tells the probability if any of the classes are

true. Mathematically, the softmax function is shown below,

where z is a vector of inputs to the output layer (in our case,

there are 10 elements in z as we have 10 output classes) and j

indexes the output classes, so j = 1, 2, 3K (in our case, K = 10).

D. Optimization function: Adam

The choice of optimization function in neural network model

can mean the difference between good results (accuracy) within

minutes, hours and days. Gradient descent is so far the most

commonly used optimization procedure to optimize neural

networks. Gradient descent is used to find the values of

parameters of a function that minimizes a cost/loss function.

Adam (Adaptive Moment Estimation) is one of the gradient

descent algorithms that are an extension to Stochastic Gradient

Descent (SGD). SGD upholds a single learning rate for all

weight updates and the learning rate does not change during

training whereas Adam computes individual adaptive learning

rates for different parameters from estimates of first and second

moments of the gradients. The bias-correction in Adam helps it

to outperform other gradient descent algorithms such as

RMSProp, Adadelta, Adagrad, etc. and therefore, Adam might

be the best overall choice [2] as it achieves good results fast.

E. Loss function: Cross-Entropy

Most learning neural networks calculate error as the difference

between the actual output and the predicted output. The

function that is used to calculate this error is known as Loss or

Error or Cost function. There are various loss functions that

give different errors for the same prediction and thus have a

significant effect on the performance of the model. Loss

functions can be categorized into three major categories:

1. Regressive loss functions: These functions are used in a

regressive problem that is when the target variable is

continuous. Most commonly used regressive loss function is

Mean Square Error

2. Embedding loss function: These functions are used to

measure whether two inputs are similar or dissimilar.

Examples of this category are Hinge Error and Cosine Error

3. Classification loss functions: These functions are used in

classification problem that is when the target variable is a

probability value f(x) called the score for the input x. Since

our research case problem of recognizing handwritten digits

is a classification problem, we have used cross-entropy

which is a classification loss function. There are two types

of cross-entropy functions such as binary cross-entropy that

is used to classify inputs into either of two classes (0 or 1)

and categorical cross-entropy that is used to classify inputs

into more than two classes. In our case, we have 10 classes

or labels (0 to 9) and so we have used categorical cross-

entropy as loss function for our neural networks.

3. IMPLEMENTATION
We have followed the basic framework of the artificial neural

network while implementing the three algorithms – Multi-

layered Perceptron (MLP), Radial Basis Function (RBF) and

Convolutional Neural Network (CNN) – in order to analyze

their functioning and performance in recognizing handwritten

digits using MNIST dataset. The basic framework followed for

our research is as follows:

1. Load MNIST dataset from keras library.

2. The MNIST dataset contains images of 28 x 28 pixels (2-

dimensional array), flattened the images into a vector of

784-pixel numbers.

3. Normalize the pixel values ranging between 0 and 255 to

fit into the scale of 0 and 1.

4. A number of nodes in the input layer is 784 and that in the

output layer is 10 (for labels 0 to 9).

5. Assign random weights to all linkages (links from one

neuron of one layer to the neuron in another layer) to start

the algorithm.

6. Find the activation rates of hidden nodes by ReLU

activation function using the inputs in the input layer and

the linkages (input nodes --> hidden nodes).

7. Find the error rate at the output node by categorical cross-

entropy loss function and recalibrate all the linkages

between hidden nodes and output nodes.

8. Cascade down the error to hidden nodes using the weights

and error found at output nodes by Adam optimizer.

9. Recalibrate the weights between the hidden node and the

input nodes.

10. Repeat the process until the convergence criterion is met

11. Score the activation rate of the output nodes using the final

linkage weights.

MLP, RBF and CNN - all three follow the above basic

framework that we have defined for our research, however,

RBF and CNN also provide an extension of this framework.

The detailed functioning of these three neural networks

algorithms are given below:

F. Multi-layered Perceptron (MLP)

MLP strictly follows the basic framework defined above. MLP

has at least one hidden layer and is referred to as "vanilla"

neural network specifically when it has only one hidden layer.

../../../omak/Downloads/www.IJARIIT.com

Dasgaonkar Karishma, Chopade Swati; International Journal of Advance Research, Ideas and Innovations in Technology

© 2018, www.IJARIIT.com All Rights Reserved Page | 2431

G. Radial Basis Function (RBF)

RBF neural network is structurally same as MLP. While both

MLP and RBF could solve non-linear classification problems,

RBF neural networks transform the input signal into another

form which can then be fed into the network, unlike MLP. RBF

neural networks are strictly limited to have just one hidden

layer. This hidden layer is called feature vector. RBF neural

networks increase the dimension of the feature vector; this, in

turn, increases the linear separability of the feature vector.

Gaussian activation functions are generally used for RBF

networks. Only the hidden layer nodes perform the radian basis

transformation (Gaussian activation) function and output layer

performs the linear combination of the generated outputs in the

hidden layer in order to give a final probabilistic value. Thus, in

RBF networks, the classification is done only at hidden layer to

output layer.

H. Convolutional Neural Networks (CNN)

CNN is an extension to MLP. The first hidden layer is the

convolutional layer. The convolutional layer has feature maps

each with the size of 5 x 5 matrix and a rectifier activation

function. The output of the convolutional layer is smaller than

the original image. The next layer is the pooling layer that

takes the maximum or average (in our case, max) of the output

from the first hidden layer and is configured with a pool size

of 2 x 2. The next layer is the activation layer that converts the

2D matrix to a vector and is passed to be processed by fully

connected layers (standard MLP).

4. RESULTS
In our study of the above three mentioned neural networks, we

have used relu as activation function in the hidden layer of

MLP, CNN and Gaussian as activation function for RBF,

softmax as activation function in the final layer of neural

network, adam as an optimizer, cross-entropy as loss function,

batch size (total number of training examples present in a

single batch) of 64 and 1 hidden layer. Following are the output

screenshots of our implementation of the three mentioned

neural networks:

I. Multi-layered Perceptron (MLP)

In MLP, the error rate is 1.74% and test accuracy is 97.92%

after 10 epochs (one epoch is when an entire dataset is passed

forward and backward through the neural network only once).

The time is taken by each epoch to complete increases by few

seconds as the number of epochs increases. With the increase

in the number of epochs, the current loss (loss) of the training

set decreases and the accuracy (acc) of the training set increases

gradually. Same goes for the validation set loss and accuracy

(val_loss and val_acc).

J. Radial Basis Function (RBF)

In RBF, the error rate is 1.45% and test accuracy is 98.55%

after 10 epochs. The time taken by each epoch to complete is

much less than that in MLP. With the increase in the number of

epochs, the current loss (loss) of the training set decreases and

the accuracy (acc) of the training set increases gradually. Same

goes for the validation set loss and accuracy (val_loss and

val_acc). However, the losses are more in the initial epochs as

compared to MLP

K. Convolutional Neural Networks (CNN)

5. CONCLUSIONS
RBF trains model faster as compared to MLP and CNN while

CNN takes a longer time to train than the other two. MLP

CNN gives the highest accuracy of 99%. However, if the

dataset is not complex such as MNIST, it is better to use MLP

or RBF or combination of both instead of CNN as CNN takes

longer to train. Therefore, the selection of a neural network for

classification problem highly depends upon the dataset used.

6. REFERENCES
[1] Ali Shatnawi, Ghadeer Al-Bdour, Raffi Al-Qurran and

Mahmoud Al-Ayyoub, “A Comparative Study of Open

Source Deep Learning Frameworks,” 9th International

Conference on Information and Communication Systems

(ICICS), 2018

[2] Sebastian Ruder, “An overview of gradient descent

optimization algorithms,” Insight Centre for Data

Analytics, NUI Galway, Aylien Ltd., Dublin, arXiv:

1609.04747v2 [cs.LG] 15 June 2017.

[3] Jyoti and Anil Kumar Rawat, “Scale Conjugate Gradient-

based learning applied to Handwritten Digit

Classification,” Conference on Information and

Communication Technology (CICT17), 2017

[4] Fatih Ertam, Galip Aydin, “Data Classification with Deep

Learning using Tensorflow,” 978-1-5386-0930-9/17

IEEE.

../../../omak/Downloads/www.IJARIIT.com

