Prevalence of hypertension at selected area

V. Senbahavalli
shenvino2004@yahoo.co.in
Apollo College of Nursing, Chennai, Tamil Nadu

Dr. Chidambaranathan
drchidambaranathan n@apollohospitals.com
Apollo Hospitals, Chennai, Tamil Nadu

Abstract

Majority of the participants belongs to the age group 20-40 years (60\%), gender male (56\%), have height in the range 161-171cm (35\%), weight 51-60 Kg (30\%), BMI as normal (44.25\%), BP as normal (89.8\%), RBS as normal (84.1\%). 2. There is a significant association between all the demographic variables and all the clinical variables.

Keywords-Prevalence, Hypertension

1. INTRODUCTION

As a part of our community health nursing departmental activity, we organized a hypertension prevalence study at areas in and around Ayanambakam covering 2000 samples. The findings of the study were as follows. Assessment of an individual helps us to find out the health status of that individual, similarly, assessment of a group of people helps us to find out the health problems prevailing among the individuals of the group. Hence we are assessing all people who are at the risk of having Malnutrition, Diabetes mellitus and Hypertension in selected wards of Thiruverkadu Municipality.

2. METHODOLOGY

Detection of any deviation from what is known to be normal, such as can be described in terms of, for example, anatomy (the structure of the human body), physiology (how the body works), pathology (what can go wrong with the anatomy and physiology), psychology (thought and behavior) and human homeostasis (regarding mechanisms to keep body systems in balance). We collected data using the tool with demographic variables and clinical variables. All the data was presented as follows.

3. RESULTS

The major findings are grouped as the following:

- Frequency and percentage distribution of demographic variables
- Frequency and percentage distribution of clinical variables
- Association between selected demographic variables and clinical variables

Table 1: Frequency and percentage distribution of demographic variables $\mathbf{N}=\mathbf{2 0 0 0}$

S. no.	Demographic variables	\mathbf{n}	\mathbf{p}
1.	Age in years		
	$1.1 .<20$	60	3
	$1.2 .20-40$	1200	60
	$1.3 .41-60$	580	29
	$1.4>60$	160	8
2.	Gender		
	2.1. Male	1128	56
	2.2. Female	871	44

Table 1 shows that majority of the participants belongs to the age group $20-40$ years (60%) and gender male (56%).

Senbahavalli V., Chidambaranathan; International Journal of Advance Research, Ideas and Innovations in Technology

Table 2: Frequency and Percentage distribution of clinical variables, $\mathbf{N}=\mathbf{2 0 0 0}$

S. no.	Clinical variables	n	p
1.	HEIGHT		
	<150	325	16.0
	$150-160$	659	33.0
	$161-170$	697	35.0
	>170	319	16.0
2.	WEIGHT		
	<50	292	14.6
	51-60	604	30.2
	61-70	559	28.0
	>70	545	27.3
3.	BMI		
	<18	79	3.95
	$18-24$	885	44.25
	25-29	764	38.2
	>30	272	13.6
4.	BLOOD PRESSURE		
	Hypotension	5	.3
	Normal	1796	89.8
	Hypertension	199	10.0
5.	RANDOM BLOOD SUGAR		
	Hypoglycemia	5	.3
	Normal	1681	84.1
	Hyperglycemia	314	15.7

Data from Table 2. Shows that majority of the participants have a height in the range $161-171 \mathrm{~cm}(35 \%)$, weight $51-60 \mathrm{Kg}(30 \%)$, BMI as normal (44.25\%). BP as normal (89.8\%) and RBS as normal (84.1\%).

Table 3: Association between selected demographic variables and Height, $\mathbf{N}=2000$

Demographic variables	$<\mathbf{1 5 0}$	$\mathbf{1 5 0 - 1 6 0}$	$\mathbf{1 6 1 - 1 7 0}$	$\mathbf{> 1 7 0}$	$\chi^{\mathbf{2}}$
Age (in years)					
<20yrs	9	19	27	12	
$21-40 \mathrm{yrs}$	162	373	439	233	
$41-60 \mathrm{yrs}$	93	219	189	69	98.269
$>60 \mathrm{yrs}$	61	48	42	5	$\mathrm{df}=9$
Gender	42	224	563	300	739.940
Male	283	435	134	19	$\mathrm{df}=3$
Female	$\mathbf{p = 0 . 0 0 0}$				

Data from table 3 shows that there was a significant association between demographic variable (age, gender) and level of their height.

Table 4: Association between selected demographic variables and Weight $\mathbf{N}=2000$

Demographic variables	$<\mathbf{5 0}$	$\mathbf{5 1 - 6 0}$	$\mathbf{6 1 - 7 0}$	$>\mathbf{7 0}$	$\chi^{\mathbf{2}}$
Age (in years)					
$<20 \mathrm{yrs}$	33	27	3	4	
$21-40 \mathrm{yrs}$	138	362	358	349	175.870
$41-60 \mathrm{yrs}$	63	167	162	178	$\mathrm{df}=9$
$>60 \mathrm{yrs}$	58	48	36	14	
Gender					
Male	103	295	324	406	142.215
Female	189	308	235	139	$\mathrm{df}=3$
	$\mathbf{p = 0 . 0 0 0}$				

Table 4 shows that there was a significant association between demographic variable (age, gender) and level of their weight.
Table 5: Association between selected demographic variables and BMI, N = 2000
$\left.\begin{array}{llllll}\begin{array}{l}\text { Demographic } \\ \text { variables }\end{array} & <\mathbf{1 8} & \mathbf{1 8 - 2 4} & \mathbf{2 5 - 2 9} & \mathbf{> 2 9} & \chi^{\mathbf{2}} \\ \hline \text { Age (in years) } & & & & & \\ \hline<20 y r s\end{array}\right)$

Senbahavalli V., Chidambaranathan; International Journal of Advance Research, Ideas and Innovations in Technology

Data from table 5 shows that there was a significant association between demographic variable (age, gender) and level of their BMI.
Table 6: Association between selected demographic variables and blood pressure, $\mathbf{N}=\mathbf{2 0 0 0}$

| Demographic
 variables | hypotension | normal | hypertension | $\boldsymbol{\chi}^{\mathbf{2}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Age (in years)
 $<20 \mathrm{yrs}$ | 0 | 64 | 3 | 64.958 |
| $21-40 \mathrm{yrs}$ | 3 | 1130 | 74 | $\mathrm{df}=6$ |
| 41-60yrs | 2 | 479 | 89 | |
| 60yrs | 0 | 123 | 33 | |
| Gender | 0 | 1015 | 113 | 6.613 |
| Male
 Female | 5 | 780 | 86 | $\mathrm{df}=2$ |
| $\mathbf{p = 0 . 0 0 0}$ | | | | |

Table 6 shows that there was a significant association between demographic variable (age, gender) and level of their Blood Pressure.
Table 7: Association between selected demographic variables and random blood sugar, $\mathbf{N}=2000$

Data from table 7 shows that there was a significant association between demographic variable (age, gender) and level of their Random Blood Sugar.

4. DISCUSSION

The major findings of the camp report show that

1. Majority of the participants

- Belongs to the age group 20-40 years (60\%)
- Gender male (56\%)
- Have a height in the range $161-171 \mathrm{~cm}$ (35%)
- Weight $51-60 \mathrm{Kg}$ (30%)
- BMI as normal (44.25\%)
- BP as normal (89.8\%)
- RBS as normal (84.1\%).

2. There is a significant association between all the demographic variables and all the clinical variables.

5. REFERENCES

[1] World Health Organization. Global Health Observatory (GHO) Data: Raised Blood Pressure—Situation and Trends. 2016.
[2] Gillespie C. D., Hurvitz K. A. Prevalence of hypertension and controlled hypertension—United States, 2007-2010. MMWR Supplements. 2013;62(3):144-148
[3] Health Promotion Administration. Ministry of Health and Welfare. 2007 survey on the prevalence of hypertension, hyperglycemia and hyperlipidemia in Taiwan.
[4] Chobanian A. V., Bakris G. L., Black H. R., et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. Journal of the American Medical Informatics Association. 2003;289(19):2560-2572
[5] Huang Y. N., Wu T. Y., Kuo K. L., et al. Prevalence, awareness, treatment and control of hypertension and diabetes mellitus among adults participating in health examinations in Taipei city. Taiwan Journal of Family Medicine. 2011;21(4):157-166.

