
International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |560

ISSN: 2454-132X

Impact Factor: 6.078
(Volume 7, Issue 2 - V7I2-1352)

Available online at: https://www.ijariit.com

Incorporating background knowledge in TuckER
Joss RazanakotoRakotobe

joss.rakotobe.razanakoto@umontreal.ca

University of Montreal, Montreal, Canada

Hao Yu Zhang

haoyu.zhang@umontreal.ca

University of Montreal, Montreal, Canada

ABSTRACT

Knowledge graphs are a way to represent a large quantity of relational facts coming from real word knowledge. Since that

knowledge is generally incomplete, a vast research area, known as Link Prediction is devoted to infer possible unknown facts

based on the existing ones. We focus on a recent state-of-the-art linear model called TuckER that was introduced for the task of

link prediction by Balazevich et al. (Balazevic et al., 2019). In this project, we propose ways to incorporate background knowledge

about symmetric and asymmetric relations. We show that our model performs better than the TuckER model on those relations

while requiring half of parameters.

Keywords – Knowledge Graph, Link Prediction, Tucker Decomposition, Tensor Factorization, Tensor, Factorization, WN18,

WN18RR, FB15K

1.INTRODUCTION
A knowledge graph (KG) is a dataset of relational facts between entities coming from real-world knowledge. It is represented as an

oriented labeled graph where the vertices represent entities and the edges represent relations. Since they are typically incomplete,

meaning that there are missing facts about certain relationships between some entities, there is an active area of research trying to

infer possible missing edges in the knowledge graph. Several models have recently come to light to tackle this problem. In particular,

Balazevic et al. (Balazevic et al., 2019) proposed a state-of-the-art linear model called TuckER, based on the Tucker decomposition

of the binary tensor representation of the graph. Sometimes, some relations are known to have particular properties such as

symmetry, asymmetry or being the inverse of another relation. We refer to this type of knowledge as “background knowledge”. We

believe that enforcing these properties into a model should improve its performance. This kind of work was already performed by

Minervini et al. (Minervini et al., 2017) on three linear models, namely TransE, DistMult and ComplEx, and also by Kazemi et al.

(Kazemi & Poole, 2018) on SimplE. The results they obtained support our assumption.

 In this project, we propose different ways to incorporate background knowledge into the TuckER model. We will show that our

new model is fully expressive, i.e. given any ground truth over the triples, there exists an assignment of values to the entity and

relation embedding that accurately separates the true triples from false ones, and we derive a dimension bound which guarantees

full expressiveness. Finally, we made an extensive set of experiments in order to compare the efficiency of using background

knowledge with TuckER.

2.PRELIMINARIES

Let 𝐸 = {𝑒1, … , 𝑒𝑛} be the set of entities(e.g. objects, people, words etc.} and 𝑅 = {𝑟1, … , 𝑟𝑛} the set of relations between entities.

A fact about how entity subject 𝑒𝑆 is in relation 𝑟𝑖 with an entity object 𝑒0 is represented by a triple (𝑒𝑠, 𝑟𝑖 , 𝑒𝑜) ∈ 𝐸 × 𝑅 × 𝐸. We can

represent a knowledge graph as a third order binary tensor 𝜒 ∈ ℝ𝑛𝑒×𝑛𝑟×𝑛𝑒 where the (𝑖, 𝑗, 𝑘) element of 𝜒 equals one if (𝑒𝑖 , 𝑟𝑗 , 𝑒𝑘)

is known to be a true fact, and zero otherwise.

2.1 Link Prediction

In link prediction, we are given a subset ζ ⊂ E × R × E which represents the a priori known facts. The goal is to learn a scoring

function φ : E × R × E → R. The value of the scoring function φ(s, r, o) will give an indication about how likely the fact (s , r, o) is

to be true or false.

2.2 TuckER(Balazavic et al,. 2019)

The idea of the TuckER model was to do a Tucker decomposition of the third order binary tensor representation of the knowledge

graph𝜒. Recall that a Tucker decomposition of a third order tensor 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3 consists in writing

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V7I2-1352
mailto:joss.rakotobe.razanakoto@umontreal.ca
mailto:haoyu.zhang@umontreal.ca

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |561

𝑇 = 𝑍 ×1 𝐴 ×2 𝐵 ×3 𝐶 with 𝑍 ∈ ℝ𝑑𝑎×𝑑𝑏×𝑑𝑐 , 𝐴 ∈ ℝ𝑑1×𝑑𝑎 , 𝐵 ∈ ℝ𝑑2×𝑑𝑏 , 𝐶 ∈ ℝ𝑑3×𝑑𝑐.

The idea of TuckER is to view 𝐴 as the embedding matrix of the subject entity, 𝐶, as the embedding matrix of the object entity, 𝐵

as the relation embedding matrix, and 𝑊 as the core tensor, which encodes the interaction between the relations and the entities.

Since it is more natural to have only one representation embedding for an entity, they choose to have 𝐴 = 𝐶 . Therefore, the objective

becomes to learn a core tensor 𝑊 and two matrices 𝐸, 𝑅 such that 𝜒 ≈ 𝑊 ×1 𝐸 ×2 𝑅 ×3 𝐸 .

For that purpose, they defined the scoring function as 𝜙(𝑠, 𝑟, 𝑜) = 𝑊 ×1 𝑣𝑠 ×2 𝑤𝑟 ×3 𝑣𝑜, where 𝑣𝑠, 𝑤𝑟 and 𝑣𝑜 are the embedding

vectors of the entity subject 𝑠, the relation 𝑟 and the entity object 𝑜 respectively. Finally, they applied a logistic sigmoid function

on the score, to get a probabilistic approach.

2.3 Background Knowledge

Typically in link prediction, we refer as Background Knowledge a set of proprieties that we know about the relations. For example,

”sibling of” is a relation that is symmetric. A relation can be reflexive, symmetric, transitive, asymmetric, antisymmetric or can be

the inverse of another relation. For completeness, we provide the formal definitions of these types of relations in Appendix A. Since

background knowledge is known to be true, it is natural to think that incorporating it to a model should improve the model’s

performance. This kind of work was performed by Minervini et al. (Minervini et al., 2017). They focused on incorporating

knowledge about symmetric and inverse relations. Basically, their method was to use a soft regularization term that gets a high value

when a background knowledge is not respected, and incorporated it on three link prediction models: TransE, DistMult and ComplEx.

The regularization term was tuned with a hyper-parameter that controlled the softness of the constraint: a very high value of the

hyper-parameter leads to a hard constraint, whereas a low value is equivalent to no constraint. They have empirically shown that

the models could be improved via this regularization on some dataset. The experiment was repeated by Kazemi et al. (Kazemi &

Poole, 2018) on a different model called SimplE, and the results were similarly positive.

3. INCORPORATING BACKGROUND KNOWLEDGE INTO TuckER
We propose two different approaches to incorporate background knowledge in TuckER. We focused on symmetric and asymmetric

relations. We will denote by 𝑆 and 𝐴 the set of symmetric and asymmetric relations respectively, and by 𝑂 the rest of the relations.

In order to encode these two relation types, we want:

{
𝜙(𝑠, 𝑟, 𝑜) = 𝜙(𝑜, 𝑟, 𝑠) 𝑖𝑓 𝑟 ∈ 𝐴

𝜙(𝑠, 𝑟, 𝑜) = −𝜙(𝑜, 𝑟, 𝑠)𝑖𝑓 𝑟 ∈ 𝑆
 (1)

3.1 First Method: TuckER-bk

Our first method to incorporate background knowledge will be to put a hard constraint on the core tensor 𝑊 and the relation

embedding of the TuckER model. The following method is inspired by the fact that the scoring function of TuckER can also be

expressed as:

𝜙(𝑠, 𝑟, 𝑜) = 𝑣𝑠
𝑇(𝑊 ×2 𝑤𝑟)𝑣0

Therefore, if we want Equation (1) to be satisfied, then one way is to enforce 𝑊 ×2 𝑤𝑟 to be a symmetric (resp. anti-symmetric)

matrix if 𝑟 ∈ 𝑆(resp. 𝑟 ∈ 𝐴).

Formally, we let 𝑛𝑟 = 𝑛𝑠 + 𝑛𝑎 + 𝑛𝑜 be the number of relations with 𝑛𝑠 = |𝑆| and 𝑛𝑎 = |𝐴|. Let 𝑑𝑟 = 𝑑𝑠 + 𝑑𝑎 the dimension of the

relation embedding with 𝑑𝑠 typically representing approximately the proportion of symmetric relations among the symmetric and

asymmetric ones. We force the first 𝑑𝑎 mode-2 slices of the core tensor 𝑊 to be anti-symmetric matrices and the last 𝑑𝑠 mode-2

slices to be symmetric matrices. Moreover, for each symmetric (resp. asymmetric) relation, we’ll force the first 𝑑𝑎 (resp. last 𝑑𝑠)
components of its embedding to be zero (see Chart-1) so that 𝑊 ×2 𝑤𝑟 will be a symmetric (resp. anti-symmetric) matrix for 𝑟 ∈ 𝑆

(resp. 𝑟 ∈ 𝐴). For other relations that are neither symmetric nor asymmetric, we put no restriction on its embedding and we note

that any matrix can be represented as the sum of a symmetric matrix and an anti-symmetric matrix. The proof of the last claim can

be found in Theorem 4.1.

Chart-1 Visualization of the TuckER-bk architecture.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |562

3.2 Second Method: TuckER-bk-score

Our second method will be to put a hard constraint on the scoring function by setting a new scoring function that is built upon the

old scoring function.

𝜙2(𝑠, 𝑟, 𝑜) =

{

𝜙(𝑠, 𝑟, 𝑜) + 𝜙(𝑜, 𝑟, 𝑠)

2
 𝑖𝑓 𝑟 ∈ 𝑆

𝜙(𝑠, 𝑟, 𝑜) − 𝜙(𝑜, 𝑟, 𝑠)

2
 𝑖𝑓 𝑟 ∈ 𝐴

𝜙(𝑠, 𝑟, 𝑜) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4. THEORETICAL ANALYSIS
4.1 Full Expressiveness and Embedding Dimensionality

We now define what it means for a model to be fully expressive and show that the methods that we used to modify the original

TuckER model into our newer models are fully expressive.

Definition 4.1 A link prediction model is fully expressive if for any ground truth over all entities and relations, there exist entity

and relation embeddings that accurately separate true triples from the false.

Theorem 4.1 Given any ground truth 𝜁 over a set of entity 𝐸 and relations 𝑅, there exists a TuckER-bk model that is fully expressive.

Proof. We adapt the proof of fully expressiveness of TuckER from the original paper (Balazevic et al., 2019). Suppose WLOG that

𝐴 = {𝑟1, … , 𝑟𝑛𝑎} and 𝑆 = {𝑟𝑛𝑟−𝑛𝑠+1, … , 𝑟𝑛𝑟} We define a temporary tensor 𝑊′ ∈ ℝ𝑛𝑒×𝑛𝑟×𝑛𝑟such that:

𝑊𝑖𝑗𝑘
′ = {

1 𝑖𝑓(𝑒𝑖 , 𝑟𝑗 , 𝑒𝑘) ∈ 𝜁

−1 𝑖𝑓 𝑟𝑗 ∈ 𝐴 𝑎𝑛𝑑 (𝑒𝑘 , 𝑟𝑗 , 𝑒𝑖) ∈ 𝜁

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The core tensor 𝑊 is defined to be of size 𝑛𝑒 × (𝑛𝑎 + 2𝑛𝑜 + 𝑛𝑠) × 𝑛𝑒 where 𝑊:𝑗: = 𝑊:𝑗:
′ 𝑓𝑜𝑟 𝑗 ≤ 𝑛𝑎 𝑎𝑛𝑑 𝑊:𝑗+𝑛𝑜: = 𝑊:𝑗:

′ for 𝑗 ≥

𝑛𝑟 − 𝑛𝑠 + 1. For the 2 × 𝑛𝑜 middle mode-2 slices, we will use the fact that every matrix 𝐴 is the sum of a symmetric and anti-

symmetric matrix: 𝐴 =
𝐴+𝐴𝑇

2
+

𝐴−𝐴𝑇

2
, to define 𝑊:𝑗: =

𝑊:𝑗:
′ −(𝑊:𝑗:

′)
𝑇

2
 for 𝑗 = 𝑛𝑎 + 1,… , 𝑛𝑎 + 𝑛𝑜 and 𝑊:𝑗: =

𝑊:𝑗:
′ +(𝑊:𝑗:

′)
𝑇

2
 for 𝑗 = 𝑛𝑎 +

𝑛𝑜 + 1,… 𝑛𝑎 + 2𝑛0. Finally, using the one hot encoding embedding for the entity, and concatenating 𝐴, 𝑂, 𝑂 and 𝑆 to get 𝑅′ =

(𝑟1, … , 𝑟𝑛𝑎 , 𝑟𝑛𝑎+1, … , 𝑟𝑛𝑎+𝑛𝑜 , 𝑟𝑛𝑎+1, … , 𝑟𝑛𝑎+𝑛𝑜 , 𝑟𝑛𝑎+𝑛𝑜+1, … , 𝑟𝑛𝑟), we define the embedding of relation 𝑟𝑗 as a vector where the 𝑖-th

element equals 1 if the 𝑖 − 𝑡ℎ element of 𝑅′ is 𝑟𝑗, else 0.

We obtain 𝜙(𝑠, 𝑟, 𝑜) = 1 if (𝑠, 𝑟, 𝑜) ∈ 𝜁, and otherwise, 𝜙(𝑠, 𝑟, 𝑜) ≤ 0.

We now show the result of fully expressiveness for our second approach.

Theorem 4.2 Given any ground truth over a set of entity 𝐸 and relations 𝑅, there exists a TuckER-bk-score model that is fully

expressive.

Proof. Let 𝑒𝐸(𝑠)and 𝑒𝐸(𝑜) be the 𝑛𝑒 dimensional one hot binary encoding vector is the embedding of the subject 𝑠 and object 𝑜

and 𝑒𝑅(𝑟) be the 𝑛𝑟 dimensional one-hot binary vector representation of relation𝑟. For 𝑖𝑡ℎ subject entity 𝑗𝑡ℎ relation type and 𝑘𝑡ℎ

object entity, the 𝑖, 𝑗, 𝑘 element of the respective vectors 𝑒𝐸(𝑠), 𝑒𝐸(𝑜), 𝑒𝑅(𝑟) be 1 and all other elements0. Let (𝑖, 𝑗, 𝑘) coordinates

of the core tensor 𝑊 be 1 if (𝑠, 𝑟, 𝑜)∈ ζ and −1 otherwise.

We have three situations:

• 𝑟 is a symmetric relation:

▪ (𝑠, 𝑟, 𝑜) ∈ 𝜁 ⇒ (𝑜, 𝑟, 𝑠) ∈ 𝜁 ⇒ 𝜙(𝑠, 𝑟, 𝑜) = 𝜙(𝑜, 𝑟, 𝑠) = 1 ⇒ 𝜙2(𝑠, 𝑟, 𝑜) =
1+1

2
= 1

▪ (𝑜, 𝑟, 𝑠) ∉ 𝜁 ⇒ 𝜙(𝑠, 𝑟, 𝑜) = 𝜙(𝑜, 𝑟, 𝑠) = −1 ⇒ 𝜙2(𝑠, 𝑟, 𝑜) =
−1−1

2
= 1

• 𝑟 is an asymmetric relation:

▪ (𝑠, 𝑟, 𝑜) ∈ 𝜁 ⇒ (𝑜, 𝑟, 𝑠) ∉ 𝜁 ⇒ 𝜙(𝑠, 𝑟, 𝑜) = 1, 𝜙(𝑜, 𝑟, 𝑠) = −1 ⇒ 𝜙2(𝑠, 𝑟, 𝑜) =
1−(−1)

2
= 1

▪ (𝑠, 𝑟, 𝑜) ∉ 𝜁 ⇒ (0, 𝑟, 𝑠) ∈ 𝜁 ⇒ 𝜙(𝑠, 𝑟, 𝑜) = −1, 𝜙(𝑜, 𝑟, 𝑠) = 1 ⇒ 𝜙2(𝑠,𝑟,𝑜) =
−1−1

2
= −1

• r is not symmetric not asymmetric:

▪ 𝜙2(𝑠,𝑟,𝑜) = 𝜙(𝑠, 𝑟, 𝑜) = {
1 𝑖𝑓 (𝑠, 𝑟, 𝑜) 𝑖𝑛 𝜁
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The scores of triples of 𝜁 and its complementary are separated by 0, hence the model is fully expressive.

4.2 Representing Asymmetric relations

We saw that another way to view the scoring function of TuckER: 𝜙(𝑠, 𝑟, 𝑜) = 𝑣𝑠
𝑇(𝑊 ×2 𝑤𝑟)𝑣𝑜. Namely, it is a bi-linear product

of the embedding of the entities with the mode-2 product of the core tensor with the relation embedding of 𝑟.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |563

For the original TuckER, the matrix resulting from a mode2 product of the core tensor with the embedding of an asymmetric relation

does not exhibit an obvious structure. However, for the model we get from the first approach, the mode-2 product of the core tensor

with the embedding of an asymmetric relation would be an anti-symmetric matrix. Hence, the bi-linear product of entities embedding

with the resulting anti-symmetric matrix will flip signs depending on if we were to compute the scoring of (𝑠, 𝑟, 𝑜)or (𝑜, 𝑟, 𝑠).
Namely, the scoring of (𝑠, 𝑟, 𝑜)would be negative of the scoring of (𝑜, 𝑟, 𝑠)
The same is true for our second approach; the scoring of (𝑠, 𝑟, 𝑜) would be negative of that of (𝑜, 𝑟, 𝑠) if 𝑟 is an asymmetric relation.

5.EXPERIMENTS AND RESULTS
5.1 Datasets

We now present the dataset that was used in the project. We have used the WN18RR dataset which is derived from the dataset

WN18. The WN18 dataset was introduced by Bordes et al. (Bordes et al., 2013). It included the full 18 relations scraped from

WordNet for roughly 41,000 synsets. Similar to FB15K, this dataset was found to suffer from test leakage by Dettmers et al.

(Dettmers et al., 2017). As a way to overcome this problem, Dettmers et al. (2018) introduced the WN18RR dataset, derived from

WN18, which features 11 relations only, no pair of which is reciprocal (but still include four internally symmetric relations like verb

groups, allowing the rule-based system, which is a simple algorithm that consists of completing the training set with the rules of the

relations, to reach 35 on all three metrics).

5.2 Experiments

We implemented our models using as foundation the code in PyTorch of (Balazevic et al.). We made our code available on GitHub

. We provide some detailed explanations about both methods’ implementations in Appendix B.

We choose all hyper-parameters based on a grid search. We choose the entity embedding dimension to be 𝑑𝑒 = 200 and relation

embedding dimension to be 𝑑𝑟 = 𝑑𝑠 + 𝑑𝑎 = 15 + 15. We used a batch normalization and dropout to speed up the training and

improve the generalization.

5.3 Results and interpretation

In order to evaluate the performance of our models, we used 4 metrics, typical of Link Prediction task:

▪ MRR is the Mean Reciprocal Rank of the true triples over all candidate triples.

▪ Hits@k measures the percentage of times a true triple is ranked within the first 𝑘 candidates.

We used the Hits@k, 𝑘 ∈ {1,3,10} metric and the MRR to evaluate the performance of our models. Unless specified, all the reported

results come from evaluating on a test set.

Our first experiment is plotted in Chart-2. We trained all the models for 200 epochs on the WN18RR dataset. As we can see, there

is a threshold starting where the original TuckER model performs better than our models after certain number of training iterations.

What we suspect to be happening is that after a while, the original TuckER model Learns to differentiate the symmetric and

asymmetric relations as well. In Chart-2, we can also see two heat-maps of the matrices each resulting from the mode-2 product of

the core tensor with a relation embedding (on the left, we have a symmetric relation, on the right, we have a asymmetric relation).

The resulting matrices are quite as we expected from them: symmetric for the symmetric relation, anti-symmetric for the asymmetric

relation.

Our second set of experiments is designed to test the robustness of the models to small datasets. We trained our models, again for

200 epochs, but on a random subset of the original training set Chart-3 show the MRR performance result of the three models on

different percentages of the training data (the other metric results may be found in Appendix C). We can see that the new models

perform better than the original TuckER model for small percentage of data-sets. The small percentage of data means fewer

interactions between relations, but for larger dataset, the interactions between relations become more complex. For our first model

implementation, the embeddings of asymmetric relations are linearly independent to the symmetric ones. However, some

asymmetric relations can be affected by the knowledge of some symmetric relations. For example, knowing a person A is the brother

of a person B (symmetric relation) will have an impact on inferring where person B is born (asymmetric relation). This is true for

our second implementation as well.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |564

Chart-2. Typical running plots of the models. The evaluation was done at each epoch on a validation set, and one time, at the end

of the training, on a test set. The tendency is similar with the other metrics as well

Table-1. Evaluation of the models on restricted relations

Chart-3. MRR of TuckER and TuckER-bk using different percentages of the training set

So our guess on why we see an increase in the performance of the original TuckER is that without regularizing through the core

tensor or the scoring function, it can potentially capture more complex interactions between different types of relations.

Finally, we have examined the performance on each type of relations. We restricted our dataset with certain types of relations.

Table-1 shows the results on all models, when restricting to symmetric relations, to asymmetric ones, to both of those two, or to

anything but those two. As expected, enforcing symmetry/asymmetry is improving the performance of modeling the

symmetric/asymmetric relations. Our first method put the knowledge of a relation being symmetric or anti-symmetric much more

on the embedding of the relation itself rather than letting the core tensor figure out the nature of the relation. This is in contrast to

the original TuckER model where the model figures out the interactions between the relations and determines the type of a relation.

By restricting the data-set on one of the two symmetric or asymmetric relations, the complex interactions between the relations

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |565

become irrelevant and need not be captured by the model and hence the newer models will perform better. However, when we train

with both symmetric and asymmetric relations together, the interactions between the two type of relations is not captured by the

new models and the original model can beat the new models, for example, in the Hits@3 metric. Also, as expected, for relations

that are neither symmetric nor asymmetric, the original TuckER model performs better.

6. CONCLUSION
In our project, we have presented two ways of incorporating the background knowledge of symmetric relations and asymmetric

relations into the TuckER model. The advantages of our news models compared to the original TuckER model are that

▪ They learn faster in early stages in terms of SGD steps

▪ Tucker-bk needs less parameters to achieve similar results

▪ They are better at modeling symmetric/asymmetric relations

▪ They are more robust to small data sets

However, there are disadvantages as well:

▪ Tucker-bk is slightly slower in terms of computation time due to the reshaping of the parameters

▪ They are slightly less good at generalizing

▪ They might not be able to capture more complex interactions between relations of different types

We hope this project contributed to generating new ideas to the development of better models at link prediction tasks on the

knowledge graphs.

7.CONTRIBUTION
This project was done in a team of two:

▪ Haoyu contributed to modify the codes to do experiments, plot graphs, make good tables, involves in the proof of Fully

expressiveness of the newer models, Write good analysis of the experiments and the conclusions, give the backbones of

the project report, write the details on the implementation of the models and write the framework of the slides for the

presentations.

▪ Joss contributed by implementing the models, supervising, proofreading participating at and verifying all the steps of the

project (experiments, graphs and tables to do, slides, report). We hereby state that all the work presented in this report is

that of the authors.

8.REFERENCES
[1] Balazevic, I., Allen, C., and Hospedales, T. M. Tucker: Tensor factorization for knowledge graph completion. CoRR,

abs/1901.09590, 2019.

[2] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. Translating embeddings for modeling multi-relational

data. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q. (eds.), Advances in Neural Information

Processing Systems 26, pp. 2787–2795. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/5071- translating-

embeddings-for-modelingmulti-relational-data.pdf.

[3] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S. Convolutional 2d knowledge graph embeddings. CoRR,

abs/1707.01476, 2017. URL http://arxiv.org/ abs/1707.01476.

[4] Kazemi, S. M. and Poole, D. Simple embedding for link prediction in knowledge graphs. In Bengio, S., Wallach, H., Larochelle,

H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 31, pp. 4284–

4295. Curran Associates, Inc., 2018.

[5] inervini, P., Costabello, L., Munoz, E., Nov ˜ acek, V., and ´ Vandenbussche, P.-Y. Regularizing Knowledge Graph Embeddings

via Equivalence and Inversion Axioms, pp. 668–683. 01 2017. ISBN 978-3-319-71248-2. doi: 10.1 007/978-3-319-71249-9 40.

9. APPENDICES

A Definitions of relation types

Definition A.1 (Reflexive). A relations 𝑟 is called reflexive if

∀𝑠 ∈ Ε, (𝑠, 𝑟, 𝑠) ∈ 𝜁

Definition A.2 (Symmetric). A relations 𝑟 is called symmetric if

∀𝑠, 𝑜 ∈ Ε, (𝑠, 𝑟, 𝑜) ∈ 𝜁 ⇒ (𝑜, 𝑟, 𝑠) ∈ 𝜁

Definition A.3 (Transitive). A relations 𝑟 is called transitive if

(𝑠, 𝑟, 𝑜) ∈ 𝜁 ∧ (𝑜, 𝑟, 𝑡) ∈ 𝜁 ⇒ (𝑠, 𝑟, 𝑡) ∈ 𝜁

Definition A.4 (Asymmetric). A relations 𝑟 is called asymmetric if

∀𝑠, 𝑜 ∈ Ε ⇒ (𝑜, 𝑟, 𝑠) ∉ 𝜁

Definition A.5 (Anti-symmetric). A relations 𝑟 is called anti-symmetric if

∀𝑠, 𝑜 ∈ Ε, (𝑠, 𝑟, 𝑜) ∧ (𝑜, 𝑟, 𝑠) ∈ 𝜁 ⇒ 𝑠 = 𝑜
Definition A.6 (Inverse). A relation 𝑟 is the inverse of a relation 𝑞 if

∀𝑠, 𝑜 ∈ Ε, (𝑠, 𝑟, 𝑜) ∈ 𝜁 ⇔ (0, 𝑞, 𝑠) ∈ 𝜁

B. Implementation of both methods in Python

We let the maps 𝑒𝐸: Ε → ℝ𝑑𝑒 , 𝑒𝑅: 𝑅 → ℝ𝑑𝑟 represents the embedding of the entities or relations into finite dimensional vector space.

de and dr are the embedding dimensions.

We let the maps 𝑒𝑛𝑢𝑚𝐸: Ε → [𝑛𝑒 − 1] ∪ {0} and 𝑒𝑛𝑢𝑚𝑟: 𝑅 → [𝑛𝑟 − 1] ∪ {0} be bijective mappings denoting enumerations of the

entities and relations respectively. Here, each enumeration starts at 0.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |566

Let 𝑑1, 𝑑2 be our hyper-parameters. We let 𝑑𝑒 = 𝑑1and 𝑑𝑟 = 𝑑2 + 𝑑2. Let 𝑛𝑠, 𝑛𝑎 be the numbers of symmetric and anti-symmetric

relations in 𝑅. Consider a permutation𝜋 ∈ 𝑆[𝑛𝑟−1]∪{0}, so that 𝜋 ∘ 𝑒𝑛𝑢𝑚𝑟(𝑟𝑒𝑙𝑖) ∈ {0,1, … , 𝑛𝑠 − 1} if 𝑟𝑒𝑙𝑖 is symmetric. 𝜋 ∘

𝑒𝑛𝑢𝑚𝑟(𝑟𝑒𝑙𝑖) ∈ {𝑛𝑠, … , 𝑛𝑠 + 𝑛𝑎 − 1} if 𝑟𝑒𝑙𝑖 is anti-symmetric.

We let 𝑹𝟏 be a random 𝑛𝑠 × 𝑑2 matrix.

We let 𝑹𝟐 be a random 𝑛𝑎 × 𝑑2 matrix.

We let 𝑹𝟑 be a random (𝑛𝑟 − 𝑛𝑠 − 𝑛𝑎) × (𝑑2 + 𝑑2)matrix.

We construct matrix R by using 𝑅1, 𝑅2, 𝑅3 as sub-matrices as follows:

𝑹 = [

𝑹𝟏 𝟎
𝟎 𝑹𝟐
𝑹𝟑

]

We let 𝑾𝟏be a 𝑑2 ×
1+𝑑1

2
× 𝑑1 random matrix. This matrix will hold the parameters of the core tensor corresponding to slices that

represent symmetric matrices.

We let 𝑾𝟐 be a 𝑑2 ×
𝑑1−1

2
× 𝑑1 random matrix. This matrix will hold the parameter of the core tensor corresponding to slices that

represent anti-symmetric matrices.

We construct the core tensor 𝑊of size (𝑑2 + 𝑑2) × 𝑑1 × 𝑑1from 𝑊1and 𝑊2. We do it as follow: Each rows of 𝑊1 will fill a upper

diagonal 𝑑1 × 𝑑1 matrix of the form

[

𝑊1[𝑖, 1] 𝑊1[𝑖, 2] … 𝑊1[𝑖, 𝑑1]

0 𝑊_1[𝑖, 𝑑1 + 1] … 𝑊1[𝑖, 2𝑑1 − 1]
… … … …

0 0 … 𝑊_1 [𝑖,
1 + 𝑑1
2

∗ 𝑑1]]

Then we make the matrix into a symmetric one by changing the lower triangular of the matrix accordingly.

𝑊𝑖∷ =

[

𝑊1[𝑖, 1] 𝑊1[𝑖, 2] … 𝑊1[𝑖, 𝑑1]

𝑊𝑖[𝑖, 2] 𝑊_1[𝑖, 𝑑1 + 1] … 𝑊1[𝑖, 2𝑑1 − 1]
… … … …

𝑊1[𝑖, 𝑑1] 𝑊1[𝑖, 𝑑1 + 1] … 𝑊_1 [𝑖,
1 + 𝑑1
2

∗ 𝑑1]]

Here 𝑖 ∈ {0, … , 𝑑2 − 1}.
Each rows of 𝑊2 will first be used to create the upper triangular part of an ant-symmetric matrix as follow:

[

0 𝑊1[𝑖, 1] 𝑊1[𝑖, 2] … 𝑊1[𝑖, 𝑑1 − 1]

0 0 𝑊1[𝑖, 𝑑1] … 𝑊1[𝑖, 2𝑑1]… … … … …

0 0 0 … 𝑊_1[𝑖,
𝑑1 − 1

2
∗ 𝑑1]

0 0 0 … 0]

Where, 𝑖 ∈ {𝑑2, … , 𝑑2 + 𝑑2 − 1}. We then make it into an anti-symmetric matrix as we did for the symmetric one and we got out

core tensor𝑊.

Now, to compute the likelihood of tuple (𝑒𝑛𝑡𝑖 , 𝑟𝑒𝑙𝑗 , 𝑒𝑛𝑡𝑘) being a true fact, we simply compute

𝜎(𝑊 ×2 𝑒𝑅(𝑟𝑒𝑙𝑗) ×1 𝑒𝐸 (𝑒𝑛𝑡𝑖) ×3 𝑒𝐸(𝑒𝑛𝑡𝑘))

Where 𝜎(𝑥) is the sigmoid function.

For our second approach, we label the relation types based on if they are symmetric, anti-symmetric or others. We construct a

mapping that does this:

𝐶𝑜𝑛𝑠 ∶ 𝑅 → {−1,0,1}
Where

𝐶𝑜𝑛𝑠(𝑟) = {
1, 𝑖𝑓 𝑟 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

−1, 𝑖𝑓 𝑟 𝑖𝑠 𝑎𝑛 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then with the third order tensor 𝑊 ∈ ℝ𝑑𝑒×𝑑𝑟×𝑑𝑒, the embedding of entities and relations, 𝑒𝐸 , 𝑒𝑅 and enumerations of entities and

relations, the scoring function for a tuple fact (𝑠, 𝑟, 𝑜) is 𝜙(𝑠, 𝑟, 𝑜) = 1 − |0.5𝐶𝑜𝑛𝑠(𝑟)|(𝑊 ×2 𝑒𝑅(𝑟)1𝑒𝐸(𝑠) ×3 𝑒𝐸(𝑜)) +

 0.5𝐶𝑜𝑛𝑠(𝑟) (𝑊 ×2 𝑒𝑅(𝑟) ×3𝑒𝐸(𝑠)×1 𝑒𝐸(𝑜)). We apply the sigmoid function to the result to give us the likelihood that the tuple

(𝑠, 𝑟, 𝑜) is a true fact.

The training process was done using 1 − 𝑁 scoring as in the original TuckER model. Namely, for each entity relation pairs, we

score it against all other entities.

C.Graphs

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |567

Chart-4. Performance of the models against the number of training data: Hits@10

Char-5 Performance of the models against the number of training data: Hits@1

Chart-6 Performance of the models against the number of training data: Hits@3

file:///C:/omak/Downloads/www.IJARIIT.com

